Background: Programmed DNA elimination and reorganization frequently occur during cellular differentiation. Development of the somatic macronucleus in some ciliates presents an extreme case, involving excision of internal eliminated sequences (IESs) that interrupt coding DNA segments (macronuclear destined sequences, MDSs), as well as removal of transposon-like elements and extensive genome fragmentation, leading to 98% genome reduction in Stylonychia lemnae. Approximately 20-30% of the genes are estimated to be scrambled in the germline micronucleus, with coding segment order permuted and present in either orientation on micronuclear chromosomes.
View Article and Find Full Text PDFOne line of DNA computing research focuses on parallel search algorithms, which can be used to solve many optimization problems. DNA in solution can provide an enormous molecular library, which can be searched by molecular biological techniques. We have implemented such a parallel search for solutions to knapsack problems, which ask for the best way to pack a knapsack of limited volume.
View Article and Find Full Text PDFDNA computing aims at using nucleic acids for computing. Since micromolar DNA solutions can act as billions of parallel nanoprocessors, DNA computers can in theory solve optimization problems that require vast search spaces. However, the actual parallelism currently being achieved is at least a hundred million-fold lower than the number of DNA molecules used.
View Article and Find Full Text PDF