The development of new graphene-based materials necessitates the application of suitable material imaging techniques, especially for the identification of defects in the graphene structure and its continuity. For this purpose, it is natural to use one of the main properties of graphene-electrical conductivity. In this work, we prepare a 9 cm large-area monolayer graphene membrane on porous scaffolding sealed with either GO or rGO.
View Article and Find Full Text PDFGraphene transfer onto ceramics, like Si/SiO, is well-developed and described in the literature. However, it is problematic for other ceramic materials (e.g.
View Article and Find Full Text PDFGraphene has been considered as a material that may overcome the limitations of polymer semi-permeable membranes in water treatment technology. However, monolayer graphene still suffers from defects that cause leakage. Here, we report a method of sealing defects in graphene transferred onto porous polymer substrate via reduced graphene oxide (rGO).
View Article and Find Full Text PDF