Publications by authors named "Grzegorz Dobrynin"

AAA ATPases have pivotal functions in diverse cellular processes essential for survival and proliferation. Revealing strategies for chemical inhibition of this class of enzymes is therefore of great interest for the development of novel chemotherapies or chemical tools. Here, we characterize the compound MSC1094308 as a reversible, allosteric inhibitor of the type II AAA ATPase human ubiquitin-directed unfoldase (VCP)/p97 and the type I AAA ATPase VPS4B.

View Article and Find Full Text PDF

Regions of hypoxia (low oxygen) occur in most solid tumours and cells in these areas are the most aggressive and therapy resistant. In response to decreased oxygen, extensive changes in gene expression mediated by Hypoxia-Inducible Factors (HIFs) contribute significantly to the aggressive hypoxic tumour phenotype. In addition to HIFs, multiple histone demethylases are altered in their expression and activity, providing a secondary mechanism to extend the hypoxic signalling response.

View Article and Find Full Text PDF

C-1311 is a small molecule, which has shown promise in a number of pre-clinical and clinical studies. However, the biological response to C-1311 exposure is complicated and has been reported to involve a number of cell fates. Here, we investigated the molecular signaling which determines the response to C-1311 in both cancer and non-cancer cell lines.

View Article and Find Full Text PDF

The p97-Ufd1-Npl4 ATPase complex is associated with the response to DNA damage and replication stress, but how its inactivation leads to manifestation of chromosome instability is unclear. Here, we show that p97-Ufd1-Npl4 has an additional direct role in the G2/M checkpoint. Upon DNA damage, p97-Ufd1-Npl4 binds CDC25A downstream of ubiquitination by the SCF-βTrCP ligase and facilitates its proteasomal degradation.

View Article and Find Full Text PDF

During exit from mitosis in Xenopus laevis egg extracts, the AAA+ ATPase Cdc48/p97 (also known as VCP in vertebrates) and its adapter Ufd1-Npl4 remove the kinase Aurora B from chromatin to allow nucleus formation. Here, we show that in HeLa cells Ufd1-Npl4 already antagonizes Aurora B on chromosomes during earlier mitotic stages and that this is crucial for proper chromosome segregation. Depletion of Ufd1-Npl4 by small interfering RNA (siRNA) caused chromosome alignment and anaphase defects resulting in missegregated chromosomes and multi-lobed nuclei.

View Article and Find Full Text PDF

During cell division, chromosomes condense so that the replicated chromatids can be segregated by the mitotic spindle. While condensation is governed by cyclin-dependent kinase 1 (Cdk1) during mitotic entry and early mitosis, it is still poorly understood how condensation is maintained during anaphase after Cdk1 inactivation, and how decondensation is triggered in telophase. Here, we review recent reports that point to a novel role of Aurora B kinase in maintaining condensation and preventing premature nuclear envelope formation during exit from mitosis.

View Article and Find Full Text PDF