Quantitative Systems Pharmacology (QSP) models are increasingly being applied for target discovery and dose selection in immuno-oncology (IO). Typical application involves virtual trial, a simulation of a virtual population of hundreds of model instances with model inputs reflecting individual variability. While the structure of the model and initial parameterisation are based on literature describing the underlying biology, calibration of the virtual population by existing clinical data is frequently required to create tumour and patient population specific model instances.
View Article and Find Full Text PDFProduction of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops produce visually homogenous seeds. Using automated phenotype analysis, we observed that small seeds in Arabidopsis tend to have higher primary and secondary dormancy levels than large seeds.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs), pathogen-ensnaring structures formed by neutrophils by expelling their DNA into the environment, are believed to play an important role in immunity and autoimmune diseases. In recent years, a growing attention has been put into developing software tools to quantify NETs in fluorescent microscopy images. However, current solutions require large, manually-prepared training data sets, are difficult to use for users without background in computer science, or have limited capabilities.
View Article and Find Full Text PDFEukaryotic genomes are pervasively transcribed by RNA polymerase II. Yet, the molecular and biological implications of such a phenomenon are still largely puzzling. Here, we describe noncoding RNA transcription upstream of the Arabidopsis thaliana DOG1 gene, which governs salt stress responses and is a key regulator of seed dormancy.
View Article and Find Full Text PDFBackground: Bioimaging techniques offer a robust tool for studying molecular pathways and morphological phenotypes of cell populations subjected to various conditions. As modern high-resolution 3D microscopy provides access to an ever-increasing amount of high-quality images, there arises a need for their analysis in an automated, unbiased, and simple way. Segmentation of structures within the cell nucleus, which is the focus of this paper, presents a new layer of complexity in the form of dense packing and significant signal overlap.
View Article and Find Full Text PDFGenome-wide analysis of miRNA molecules can reveal important information for understanding the biology of cancer. Typically, miRNAs are used as features in statistical learning methods in order to train learning models to predict cancer. This motivates us to propose a method that integrates clustering and classification techniques for diverse cancer types with survival analysis via regression to identify miRNAs that can potentially play a crucial role in the prediction of different types of tumors.
View Article and Find Full Text PDFThe human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy.
View Article and Find Full Text PDFThe dendritic spines play a crucial role in learning and memory processes, epileptogenesis, drug addiction, and postinjury recovery. The shape of the dendritic spine is a morphological key to understand learning and memory process. The classification of the dendritic spines is based on their shapes but the major questions are how the shapes changes in time, how the synaptic strength changes, and is there a correlation between shapes and synaptic strength? Because the changes of the classes by dendritic spines during activation are time dependent, the forward-directed autoregressive hidden Markov model (ARHMM) can be used to model these changes.
View Article and Find Full Text PDFIn the Special Issue on Tools for Protein Science in 2018, we presented Molstack: a concept of a cloud-based platform for sharing electron density maps and their interpretations. Molstack is a web platform that allows the interactive visualization of density maps through the simultaneous presentation of multiple datasets and models in a way that allows for easy pairwise comparison. We anticipated that the users of this conceptually simple platform would find many different uses for their projects, and we were not mistaken.
View Article and Find Full Text PDFThe detailed architectural examination of the neuronal nuclei in any brain region, using confocal microscopy, requires quantification of fluorescent signals in three-dimensional stacks of confocal images. An essential prerequisite to any quantification is the segmentation of the nuclei which are typically tightly packed in the tissue, the extreme being the hippocampal dentate gyrus (DG), in which nuclei frequently appear to overlap due to limitations in microscope resolution. Segmentation in DG is a challenging task due to the presence of a significant amount of image artifacts and densely packed nuclei.
View Article and Find Full Text PDFCategorizing spines into four subpopulations, stubby, mushroom, thin, or filopodia, is one of the common approaches in morphological analysis. Most cellular models describing synaptic plasticity, long-term potentiation (LTP), and long-term depression associate synaptic strength with either spine enlargement or spine shrinkage. Unfortunately, although we have a lot of available software with automatic spine segmentation and feature extraction methods, at present none of them allows for automatic and unbiased distinction between dendritic spine subpopulations, or for the detailed computational models of spine behavior.
View Article and Find Full Text PDFUnlabelled: The common approach in morphological analysis of dendritic spines of mammalian neuronal cells is to categorize spines into subpopulations based on whether they are stubby, mushroom, thin, or filopodia shaped. The corresponding cellular models of synaptic plasticity, long-term potentiation, and long-term depression associate the synaptic strength with either spine enlargement or spine shrinkage. Although a variety of automatic spine segmentation and feature extraction methods were developed recently, no approaches allowing for an automatic and unbiased distinction between dendritic spine subpopulations and detailed computational models of spine behavior exist.
View Article and Find Full Text PDF