The dynamics of a substituted proton sponge-the 1,8-bis(dimethylamino)-4-cyanonaphthalene (DMAN-CN) molecule-was investigated after excitation in the S1 state. Experimental and theoretical information are reported. The former includes absorption, fluorescence, and time-resolved transient absorption spectra, which were recorded in solution.
View Article and Find Full Text PDFFumaric and maleic amides are the photoactive units of an important and widely investigated class of photocontrollable rotaxanes as they trigger ring shuttling via a cis-trans photoisomerization. Here, ultrafast decay and photoinduced isomerization in isolated fumaramide and solvated nitrogen-substituted fumaramides (that are employed as threads in those rotaxanes) have been investigated by means of CASPT2//CASSCF computational and time-resolved spectroscopic techniques, respectively. A complex multistate network of competitive deactivation channels, involving both internal conversion and intersystem crossing (ISC) processes, has been detected and characterized that accounts for the picosecond decay and photochemical/photophysical properties observed in the singlet as well as triplet (photosensitized) photochemistry of fumaramides threads.
View Article and Find Full Text PDFThe excited-state dynamics of an oligomer of polydiacetylene, 2,2,17,17-tetramethyloctadeca-5,9,13-trien-3,7,11,15-tetrayne, dissolved in n-hexane have been studied by femtosecond fluorescence upconversion and polarized transient absorption experiments under one- and two-photon excitation conditions. Spectroscopically monitoring the population relaxation in the excited states in real time results in a distinct time separation of the dynamics. It has been concluded that the observed dynamics can be fully accounted for on the basis of the two lower excited states of the target molecule.
View Article and Find Full Text PDFFemtosecond fluorescence upconversion and transient absorption experiments have been performed to monitor the photoinduced electronic, geometry, and solvent relaxation dynamics of 1,8-bis(dimethylamino)naphthalene dissolved in methylcyclohexane or n-hexane, n-dodecane, dichloromethane, and acetonitrile. The data have been analyzed by using a sequential global analysis method that gives rise to species associated difference spectra. The spectral features in these spectra and their dynamic behavior enable us to associate them with specific processes occurring in the molecule.
View Article and Find Full Text PDF