Publications by authors named "Grytsiv A"

The nickel-rich region of the system Ce-Ni-Si has been reinvestigated utilizing X-ray single-crystal, powder, and electron diffraction as well as electron microprobe and thermal analyses. Two novel hexagonal compounds, τ-CeNiSi and τ'-CeNiSi were identified. The crystal structure of τ-CeNiSi was derived from single-crystal X-ray diffraction and found to be isotypic with the SmNiP-type structure (S.

View Article and Find Full Text PDF

Physical properties, electrical resistivity (4.2-800 K), Seebeck coefficient (300-800 K), specific heat (2-110 K), Vickers hardness and elastic moduli (RT), have been defined for single-phase compounds with slightly nonstoichiometric compositions: TiNiSn, ZrNiSn, and HfNiSn. From X-ray single crystal and TEM analyses, TiNiSn, ∼ 0.

View Article and Find Full Text PDF

The temperature and phase stability of p-type skutterudites, DDFeCoSb, manufactured various preparation techniques, all exhibiting a high -level, have been studied by means of thermal analysis and Knudsen effusion mass spectrometry. The results from phase transformation measurements and characteristics of the evaporation of antimony, as the volatile element, supported by microstructure observations and by diffusion profiles are summarized and discussed in view of a full understanding of the degradation processes and knowledge of the long term operation stability of the bulk and nano-structured thermoelectrics studied. It was found out that the antimony evaporation is a complex diffusion kinetic process resulting in a stable Sb level dependent on the preparation route.

View Article and Find Full Text PDF

Investigations of phase relations in the ternary system Ti-Fe-Sb show that the single-phase region of the Heusler phase is significantly shifted from stoichiometric TiFeSb (reported previously in the literature) to the Fe-rich composition TiFeSb. This compound also exhibits Fe/Ti substitution according to TiFeSb (-0.17 ≤ x ≤ 0.

View Article and Find Full Text PDF

Novel filled skutterudites BayNi4Sb12-xSnx (ymax = 0.93) have been prepared by arc melting followed by annealing at 250, 350 and 450 °C up to 30 days in vacuum-sealed quartz vials. Extension of the homogeneity region, solidus temperatures and structural investigations were performed for the skutterudite phase in the ternary Ni-Sn-Sb and in the quaternary Ba-Ni-Sb-Sn systems.

View Article and Find Full Text PDF

Phase relations and crystal structures have been evaluated within the sections LaNi2Si2-LaZn2Si2 and CeNi2Si2-CeZn2Si2 at 800 °C using electron microprobe analysis and X-ray powder and single crystal structure analyses. Although the systems La-Zn-Si and Ce-Zn-Si at 800 °C do not reveal compounds such as "LaZn2Si2" or "CeZn2Si2", solid solutions {La,Ce}(Ni1-xZnx)2Si2 exist with the Ni/Zn substitution starting from {La,Ce}Ni2Si2 (ThCr2Si2-type; I4/mmm) up to x = 0.18 for Ce(Ni1-xZnx)2Si2 and x = 0.

View Article and Find Full Text PDF

The novel compounds Ba5{V,Nb}12Sb19+x, initially found in diffusion zone experiments between Ba-filled skutterudite Ba0.3Co4Sb12 and group V transition metals (V,Nb,Ta), were synthesized via solid state reaction and were characterized by means of X-ray (single crystal and powder) diffraction, electron probe microanalysis (EPMA), and physical (transport and mechanical) properties measurements. Ba5V12Sb19.

View Article and Find Full Text PDF

The best p-type skutterudites with ZT > 1.1 so far are didymium (DD) filled, Fe/Co substituted, Sb-based skutterudites. DD0.

View Article and Find Full Text PDF

The crystal structure of Ti(8)(Ti(x)Mn(1-x))(6)Mn(39), x = 0.187, was obtained from x-ray single-crystal diffraction data, confirming it to have rhombohedral symmetry (space group [Formula: see text]; a(hex) = 1.100 70(2) nm, c(hex) = 1.

View Article and Find Full Text PDF

Phase relations and solidification behavior in the Ge-rich part of the phase diagram have been determined in two isothermal sections at 700 and 750 °C and in a liquidus projection. A reaction scheme has been derived in the form of a Schulz-Scheil diagram. Phase equilibria are characterized by three ternary compounds: τ(1)-BaRhGe(3) (BaNiSn(3)-type) and two novel phases, τ(2)-Ba(3)Rh(4)Ge(16) and τ(3)-Ba(5)Rh(15)Ge(36-x), both forming in peritectic reactions.

View Article and Find Full Text PDF

A systematic investigation is presented on the influence of Sn-substitution in the clathrate-I compound Ba(8)Zn(x)Ge(46-x-y)Sn(y), particularly for the crystal structure and thermoelectric properties including electrical resistivity, Seebeck coefficient, and thermal conductivity. Two series of samples were prepared to explore the changes for different Sn-contents, (y), and to define the optimum Zn-content, (x), for Ba(8)Zn(x)Ge(46-x-y)Sn(y). Sn-incorporation leads to a linear expansion of the unit cell parameters.

View Article and Find Full Text PDF

The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.

View Article and Find Full Text PDF

The crystal structures of three ternary Ni-Zn borides have been elucidated by means of X-ray single-crystal diffraction (XSC) and X-ray powder diffraction techniques (XPD) in combination with electron microprobe analyses (EMPA) defining the Ni/Zn ratio. Ni(21)Zn(2)B(24) crystallizes in a unique structure type (space group I4/mmm; a = 0.72103(1) nm and c = 1.

View Article and Find Full Text PDF

High temperature thermoelectric (TE) properties for triple-filled skutterudites (Sr(x)Ba(x)Yb₁₋₂x)(y)Co₄Sb₁₂ were investigated for alloy compositions in two sections of the system: (a) for x = 0.25 with a filling fraction y ranging from 0.1 to 0.

View Article and Find Full Text PDF

Novel ternary type-I clathrate compounds Ba(8){Zn,Cd}(x)Si(46-x), x∼7 have been synthesized from the elements by melting and reacting in quartz ampoules. Structural investigations for both compounds, i.e.

View Article and Find Full Text PDF

Combining experiments and ab initio models we report on SrPt4Ge12 and BaPt4Ge12 as members of a novel class of superconducting skutterudites, where Sr or Ba atoms stabilize a framework entirely formed by Ge atoms. Below T(c)=5.35 and 5.

View Article and Find Full Text PDF