Publications by authors named "Gryczynski I"

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

We present a comprehensive spectroscopic study supported by theoretical quantum chemical calculations conducted on a molecular system (4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and the antibiotic Amphotericin B (AmB)) that exhibits highly synergistic properties. We previously reported the strong synergism of this molecular system and now wish to present related stationary measurements of UV-Vis absorption, fluorescence, and fluorescence anisotropy in a polar, aprotic solvent (DMSO and a PBS buffer), followed by time-resolved fluorescence intensity and anisotropy decay studies using different ratios of the selected 1,3,4-thiadiazole derivative to Amphotericin B. Absorption spectra measured for the system revealed discrepancies in terms of the shapes of absorption bands, particularly in PBS.

View Article and Find Full Text PDF

We studied absorption and fluorescence as well as room temperature phosphorescence (RTP) of 4-methylumbelliferone (4MU) in poly (vinyl alcohol) (PVA) films. We focused our study on the long-wavelength basic form of 4MU with absorption centered at 375 nm. The strong fluorescence with a quantum yield of above 70% appears at ∼430 nm.

View Article and Find Full Text PDF

We studied spectral properties of 1,N-etheno-2-aminopurine after immobilization in poly (vinyl alcohol) films. The absorption spectrum of 1,N-ε2APu consists of two peaks centered at 300 and 370 nm, and the fluorescence spectrum has maximum at about 460 nm. The fluorescence quantum efficiency is 62%.

View Article and Find Full Text PDF

Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices forchemical and biological species analysis in both industrial and biomedical/detection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection.

View Article and Find Full Text PDF

We studied the spectral properties of 4'-6-diamidino-2-phenylindole (DAPI) in poly (vinyl alcohol) (PVA) films. Absorption and fluorescence spectra, emission and excitation spectra, quantum yield, and fluorescence lifetime have been characterized. An efficient room temperature phosphorescence (RTP) of DAPI has been observed with UV and blue light excitations.

View Article and Find Full Text PDF

We studied the effect of annealing on the luminescence of Coumarin 106 (C106) in poly (vinyl alcohol) films (PVA films). The samples and reference polymer films were treated at temperatures between 100 °C and 150 °C (212 F and 302 F) for various times. After cooling and smoothing, the samples and references were measured at room temperature.

View Article and Find Full Text PDF

A novel approach is presented that increases sensitivity and specificity for detecting minimal traces of DNA in liquid and on solid samples. Förster Resonance Energy Transfer (FRET) from YOYO to Ethidium Bromide (EtBr) substantially increases the signal from DNA-bound EtBr highly enhancing sensitivity and specificity for DNA detection. The long fluorescence lifetime of the EtBr acceptor, when bound to DNA, allows for multi-pulse pumping with time gated (MPPTG) detection, which highly increases the detectable signal of DNA-bound EtBr.

View Article and Find Full Text PDF

Phosphorescence emission at room temperature has been observed from 2-Aminopyridyne (2APi) embedded in poly (vinyl alcohol) (PVA) films. The gated emission with UV excitation at 305 nm results in a residual delayed fluorescence at around 350 nm and a broad phosphorescence spectrum with a maximum of around 500 nm. The phosphorescence excitation spectrum of 2APi - doped PVA film differs from the absorption spectrum in the long-wavelength part, showing a band at about 400-450 nm.

View Article and Find Full Text PDF

Phosphorescence emission of 5,6-Benzoquinoline embedded in poly (vinyl alcohol) film has been studied at room temperature. A strong green long-lived emission was observed in films doped with 5,6-Benzoquinoline while illuminated on a UV plate. A broad phosphorescence emission spectrum is centered at about 500 nm.

View Article and Find Full Text PDF

Excitation and emission (observation) conditions heavily impact fluorescence measurements. Both observed spectra and intensity decays (fluorescence lifetimes), when incorrectly measured, may lead to incorrect data interpretations. In this report, we discuss the role of observation conditions in steady-state and time-resolved (lifetime) fluorescence measurements.

View Article and Find Full Text PDF

Optical biomedical imaging and diagnostics is a rapidly growing field that provides both structural and functional information with uses ranging from fundamental to practical clinical applications. Nevertheless, imaging/visualizing fluorescence objects with high spatial resolution in a highly scattering and emissive biological medium continues to be a significant challenge. A fundamental limiting factor for imaging technologies is the signal-to-background ratio (SBR).

View Article and Find Full Text PDF

This article presents a novel approach to increase the detection sensitivity of trace amounts of DNA in a sample by employing Förster resonance energy transfer (FRET) between intercalating dyes. Two intercalators that present efficient FRET were used to enhance sensitivity and improve specificity in detecting minute amounts of DNA. Comparison of steady-state acceptor emission spectra with and without the donor allows for simple and specific detection of DNA (acceptor bound to DNA) down to 100 pg/μL.

View Article and Find Full Text PDF

We studied room temperature phosphorescence of tryptophan (TRP) embedded in poly (vinyl alcohol) films. With UV (285 nm) excitation, the phosphorescence spectrum of tryptophan appears at about 460 nm. We also observed the TRP phosphorescence with blue light excitation at 410 nm, well outside of the S→Sabsorption.

View Article and Find Full Text PDF

This report presents a novel approach for detecting and visualizing small to trace amounts of DNA in a sample. By utilizing both the change in emission spectrum and change in fluorescence lifetime, there is a significant increase in detection sensitivity allowing for the imaging/visualizing of a picograms amount of DNA in a microliters volume. As in the previous reports, one of the oldest DNA intercalators, Ethidium Bromide (EtBr), is employed as a model system.

View Article and Find Full Text PDF

The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.

View Article and Find Full Text PDF

Fluorescence is an established technology for studying molecular processes and molecular interactions. More recently fluorescence became a leading method for detection, sensing, medical diagnostics, biotechnology, imaging, DNA analysis, and gene expression. Consequently, precise and accurate measurements in various conditions have become more critical for proper result interpretations.

View Article and Find Full Text PDF

The investigation of innovative label-free α-amino acids detection methods represents a crucial step for the early diagnosis of several diseases. While 1,8-diazafluoren-9-one (DFO) is known in forensic application because of the fluorescent products by reacting with the amino acids present in the papillary exudate, its application for diagnostic purposes has not been fully investigated. The stabilization of DFO over a transparent substrate allows its complexation with biomolecules for the detection of α-amino acids.

View Article and Find Full Text PDF

We studied the luminescence properties of indole in poly (vinyl alcohol) (PVA) film. The indole molecules are effectively immobilized in this polymer film and display both fluorescence and phosphorescence emission at room temperature. We noticed that the phosphorescence of indole in PVA film can be effectively excited at a longer wavelength than its typical singlet to triplet population route involving intersystem crossing.

View Article and Find Full Text PDF

Fluorescence technologies have been the preferred method for detection, analytical sensing, medical diagnostics, biotechnology, imaging, and gene expression for many years. Fluorescence becomes essential for studying molecular processes with high specificity and sensitivity through a variety of biological processes. A significant problem for practical fluorescence applications is the apparent non-linearity of the fluorescence intensity resulting from inner-filter effects, sample scattering, and absorption of intrinsic components of biological samples.

View Article and Find Full Text PDF

Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL.

View Article and Find Full Text PDF

We report the spectral properties of 2-Phenylindole (2PI) embedded in rigid poly (vinyl alcohol) (PVA) film. The 2PI in PVA film shows relatively strong and structured fluorescence with a maximum at 370 nm and surprisingly strong room temperature phosphorescence with an emission maximum of about 500 nm. The dye is highly immobilized in the polymer matrix, thus presenting high fluorescence anisotropy in an isotropic film of about 0.

View Article and Find Full Text PDF

Intrinsic emission from typical filters can unexpectedly contribute to the total measured signal in a fluorescence system. This emission becomes even more problematic for in-line geometry measurements where the excitation light can directly excite the emission filter. Potassium dichromate has minimal intrinsic fluorescence even with ultra-violet (UV) excitation.

View Article and Find Full Text PDF

Total internal reflection microscopy (TIRF) has been a powerful tool in biological research. The most valuable feature of the method has been the ability to image 100- to 200-nm-thick layer of cell features adjacent to a coverslip, such as membrane lipids, membrane receptors, and structures proximal-to-basal membranes. Here, we demonstrate an alternative method of imaging thin-layer proximal-to-basal membranes by placing a sample on a high refractive index coverslip covered by a thin layer of gold.

View Article and Find Full Text PDF

Fluorescence signal enhancement induced by the binding of intercalators to DNA has been broadly utilized in various DNA detection methods. In most instances the increase in fluorescence intensity is associated with a concomitant increase of fluorescence lifetime. This increase of the fluorescence lifetime presents an additional opportunity to increase detection sensitivity.

View Article and Find Full Text PDF