Publications by authors named "Gry M Berg"

San Francisco Bay (SFB), USA, is highly enriched in nitrogen and phosphorus, but has been resistant to the classic symptoms of eutrophication associated with over-production of phytoplankton. Observations in recent years suggest that this resistance may be weakening, shown by: significant increases of chlorophyll- () and decreases of dissolved oxygen (DO), common occurrences of phytoplankton taxa that can form Harmful Algal Blooms (HAB), and algal toxins in water and mussels reaching levels of concern. As a result, managers now ask: what levels of in SFB constitute tipping points of phytoplankton biomass beyond which water quality will become degraded, requiring significant nutrient reductions to avoid impairments? We analyzed data for DO, phytoplankton species composition, , and algal toxins to derive quantitative relationships between three indicators (HAB abundance, toxin concentrations, DO) and .

View Article and Find Full Text PDF

Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH ), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (F /F ) was a sensitive indicator of NH toxicity, manifested by a suppression of F /F in a dose-dependent manner. Two chlorophytes were the least sensitive to NH inhibition, at concentrations of >3,000 μmoles NH  · L , followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH  · L , followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH  · L .

View Article and Find Full Text PDF

Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean.

View Article and Find Full Text PDF

Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor.

View Article and Find Full Text PDF

Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta).

View Article and Find Full Text PDF

Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen.

View Article and Find Full Text PDF

Brown tides of the marine pelagophyte Aureococcus anophagefferens Hargraves et Sieburth have been investigated extensively for the past two decades. Its growth is fueled by a variety of nitrogen (N) compounds, with dissolved organic nitrogen (DON) being particularly important during blooms. Characterization of a cDNA library suggests that A.

View Article and Find Full Text PDF

Cyanobacteria dominate the world's oceans where iron is often barely detectable. One manifestation of low iron adaptation in the oligotrophic marine environment is a decrease in levels of iron-rich photosynthetic components, including the reaction center of photosystem I and the cytochrome b6f complex [R.F.

View Article and Find Full Text PDF

The marine autotroph Aureococcus anophagefferens (Pelagophyceae) was rendered axenic in order to investigate hydrolysis rates of peptides, chitobiose, acetamide, and urea as indicators of the ability to support growth on dissolved organic nitrogen. Specific rates of hydrolysis varied between 8 and 700% of rates observed in associated heterotrophic marine bacteria.

View Article and Find Full Text PDF