Background: Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear.
Methods: This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model.
Background: The upfront treatment of non-oncogene-addicted NSCLC relies on immunotherapy alone (ICI) or in combination with chemotherapy (CT-ICI). Genomic aberrations such as KRAS, TP53, KEAP1, SMARCA4, or STK11 may impact survival outcomes.
Methods: We performed an observational study of 145 patients treated with first-line IO or CT-ICI for advanced non-squamous (nsq) NSCLC at our institution tested with an extensive lab-developed NGS panel.
This work introduces a real-time intention decoding algorithm grounded in muscle synergies (Syn-ID). The algorithm detects the electromyographic (EMG) onset and infers the direction of the movement during reaching tasks to control a powered shoulder-elbow exoskeleton. Features related to muscle synergies are used in a Gaussian Mixture Model and probability accumulation-based logic to infer the user's movement direction.
View Article and Find Full Text PDFAmong Additive Manufacturing (AM) technologies, Laser Powder Bed Fusion (LPBF) has made a great contribution to optimizing the production of customized implant materials. However, the design of the ideal surface topography, capable of exerting the best biological effect without drawbacks, is still a subject of study. The aim of the present study is to topographically and biologically characterize AM-produced Ti6Al4V ELI (Extra Low Interstitial) samples by comparing different surface finishing.
View Article and Find Full Text PDFBackground: Commercially available osseointegrated devices for transfemoral amputees are limited in size and thus fail to meet the significant anatomical variability in the femoral medullary canal. This study aimed to develop a customized osseointegrated stem to better accommodate a variety of femoral anatomies in transfemoral amputees than off-the-shelf stems. Customization is expected to enhance cortical bone preservation and increase the stem-bone contact area, which are critical for the long-term stability and success of implants.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
August 2024
Upper limb amputation severely affects the quality of life of individuals. Therefore, developing closed-loop upper-limb prostheses would enhance the sensory-motor capabilities of the prosthetic user. Considering design priorities based on user needs, the restoration of sensory feedback is one of the most desired features.
View Article and Find Full Text PDFBackground: Closing the control loop between users and their prostheses by providing artificial sensory feedback is a fundamental step toward the full restoration of lost sensory-motor functions.
Methods: We propose a novel approach to provide artificial proprioceptive feedback about two degrees of freedom using a single array of 8 vibration motors (compact solution). The performance afforded by the novel method during an online closed-loop control task was compared to that achieved using the conventional approach, in which the same information was conveyed using two arrays of 8 and 4 vibromotors (one array per degree of freedom), respectively.
Small-cell lung cancer (SCLC), accounting for 10-20 % of all lung tumors, represents the most aggressive high-grade neuroendocrine carcinoma. Most patients are diagnosed with extensive-stage SCLC (ES-SCLC), with brian metastases identified in ∼ 80 % of cases during the disease cours, and the prognosis is dismal, with a 5-year survival rate of less than 5 %. Current available treatments in the second-line setting are limited, and topotecan has long been the only FDA-approved drug in relapsed or refractory ES-SCLC, until the recent approval of lurbinectedin, a selective inhibitor of RNA polymerase II.
View Article and Find Full Text PDFBackground: Despite the demonstrated greater efficacy of microprocessor knees (MPK) over mechanical knees (MK), the latter is still widely used by persons with transfemoral amputation. Besides motivations related to local insurance policies, quality of life (QoL) and satisfaction with the prosthesis play a key role in user preference.
Objective: The aim of this study is to compare QoL and satisfaction in a large sample of MPK and MK users and to assess how these outcomes are explained by clinical and demographic characteristics.
The restoration of sensory feedback is one of the current challenges in the field of prosthetics. This work, following the analysis of the various types of sensory feedback, aims to present a prototype device that could be used both for implantable applications to perform PNS and for wearable applications, performing TENS, to restore sensory feedback. The two systems are composed of three electronic boards that are presented in detail, as well as the bench tests carried out.
View Article and Find Full Text PDFCutaneous melanoma is one of the most lethal tumors among skin cancers, characterized by complex genetic and molecular alterations that result in uncontrolled cell proliferation and metastatic spread. Next-generation sequencing (NGS) enables the simultaneous examination of numerous genes, making this molecular technique essential for melanoma diagnosis, prognostic stratification, and therapy planning. Herein, we present the experience with our laboratory-designed NGS panel for the routine assessment of advanced-stage melanoma.
View Article and Find Full Text PDFImplantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to treat diseases such as diabetes or hypertension. Here, this study proposes to extend the use of these technologies to (re-)establish the connection between new (transplanted or artificial) organs and the nervous system in order to increase the long-term efficacy and the effective biointegration of these solutions.
View Article and Find Full Text PDFOsseointegrated transfemoral prostheses experience aseptic complications with an incidence between 3% and 30%. The main aseptic risks are implant loosening, adverse bone remodeling, and post-operative periprosthetic fractures. Implant loosening can either be due to a lack of initial (primary) stability of the implant, which hinders bone ingrowth and therefore prevents secondary stability, or, in the long-term, to the progressive resorption of the periprosthetic bone.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2024
Reducing energy consumption during walking is a critical goal for transtibial amputees. The study presents the evaluation of a semi-active prosthesis with five transtibial amputees. The prosthesis has a low-power actuator integrated in parallel into an energy-storing-and-releasing foot.
View Article and Find Full Text PDFPassive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses.
View Article and Find Full Text PDFBackground: Recently, we reported the presence of phantom thermal sensations in amputees: thermal stimulation of specific spots on the residual arm elicited thermal sensations in their missing hands. Here, we exploit phantom thermal sensations via a standalone system integrated into a robotic prosthetic hand to provide real-time and natural temperature feedback.
Methods: The subject (a male adult with unilateral transradial amputation) used the sensorized prosthesis to manipulate objects and distinguish their thermal properties.
Introduction: Muscular activation sequences have been shown to be suitable time-domain features for classification of motion gestures. However, their clinical application in myoelectric prosthesis control was never investigated so far. The aim of the paper is to evaluate the robustness of these features extracted from the EMG signal in transient state, on the forearm, for classifying common hand tasks.
View Article and Find Full Text PDFRecently, piezoresistive sensors made by 3D printing have gained considerable interest in the field of wearable electronics due to their ultralight nature, high compressibility, robustness, and excellent electromechanical properties. In this work, building on previous results on the Selective Laser Sintering (SLS) of porous systems based on thermoplastic polyurethane (TPU) and graphene (GE)/carbon nanotubes (MWCNT) as carbon conductive fillers, the effect of variables such as thickness, diameter, and porosity of 3D printed disks is thoroughly studied with the aim of optimizing their piezoresistive performance. The resulting system is a disk with a diameter of 13 mm and a thickness of 0.
View Article and Find Full Text PDFThis work presents an intention decoding algorithm that can be used to control a 4 degrees-of-freedom shoulder-elbow exoskeleton in reaching tasks. The algorithm was designed to assist the movement of users with upper-limb impairments who can initiate the movement by themselves. It relies on the observation of the initial part of the user's movement through joint angle measures and aims to estimate in real-time the phase of the movement and predict the goal position of the hand in the reaching task.
View Article and Find Full Text PDFIEEE Int Conf Rehabil Robot
September 2023
Accurate gait phase estimation algorithms can be used to synchronize the action of wearable robots to the volitional user movements in real time. Current-day gait phase estimation methods are designed mostly for rhythmic tasks and evaluated in highly controlled walking environments (namely, steady-state walking). Here, we implemented adaptive Dynamic Movement Primitives (aDMP) for continuous real-time phase estimation in the most common locomotion activities of daily living, which are level-ground walking, stair negotiation, and ramp negotiation.
View Article and Find Full Text PDFProsthetic reconstruction can serve as a feasible alternative, delivering both functional and aesthetic benefits to individuals with hand and finger injuries, frequent causes of emergency room visits. Implant-related infections pose significant challenges in arthroplasty and osteosynthesis procedures, contributing to surgical failures. As a potential solution to this challenge, this study developed a new class of silver (Ag)-doped chitosan (CS) coatings via electrophoretic deposition (EPD) on osseointegrated prostheses for infection therapy.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2023
Control systems of robotic prostheses should be designed to decode the users' intent to start, stop, or change locomotion; and to select the suitable control strategy, accordingly. This paper describes a locomotion mode recognition algorithm based on adaptive Dynamic Movement Primitive models used as locomotion templates. The models take foot-ground contact information and thigh roll angle, measured by an inertial measurement unit, for generating continuous model variables to extract features for a set of Support Vector Machines.
View Article and Find Full Text PDFBackground: Tumor genotyping is becoming crucial to optimize the clinical management of patients with advanced differentiated thyroid cancer (DTC); however, its implementation in clinical practice remains undefined. We herein report our single-center experience on molecular advanced DTC testing by next-generation sequencing approach, to better define how and when tumor genotyping can assist clinical decision making.
Materials And Methods: We retrospectively collected data on all adult patients with advanced DTC who received molecular profiling at the IRCSS Sant'Orsola-Malpighi Hospital from 2008 to 2022.