This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI) within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to offer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing for the assessment of the current landscape and developments within the scope of BCI.
View Article and Find Full Text PDFWhen viewing a completely ambiguous image, different interpretations can switch involuntarily due to internal top-down processing. In the case of the Necker cube, an entirely ambiguous stimulus, observers often display a bias in perceptual switching between two interpretations based on their perspectives: one with a from-above perspective (FA) and the other with a from-below perspective (FB). Typically, observers exhibit a priori top-down bias in favor of the FA interpretation, which may stem from a statistical tendency in everyday life where we more frequently observe objects from above.
View Article and Find Full Text PDFSensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age.
View Article and Find Full Text PDFExperiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study.
View Article and Find Full Text PDFIn this study, we investigated the neural and behavioral mechanisms associated with precision visual-motor control during the learning of sport shooting. We developed an experimental paradigm adapted for naïve individuals and a multisensory experimental paradigm. We showed that in the proposed experimental paradigms, subjects trained well and significantly increased their accuracy.
View Article and Find Full Text PDFEpilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies start by analyzing brain activity during the seizures revealing their type and onset mechanisms.
View Article and Find Full Text PDFIn this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning.
View Article and Find Full Text PDFPerceptual decision-making requires transforming sensory information into decisions. An ambiguity of sensory input affects perceptual decisions inducing specific time-frequency patterns on EEG (electroencephalogram) signals. This paper uses a wavelet-based method to analyze how ambiguity affects EEG features during a perceptual decision-making task.
View Article and Find Full Text PDFExtreme events are rare and sudden abnormal deviations of the system's behavior from a typical state. Statistical analysis reveals that if the time series contains extreme events, its distribution has a heavy tail. In dynamical systems, extreme events often occur due to developing instability preceded by noise amplification.
View Article and Find Full Text PDFAge-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e.
View Article and Find Full Text PDFSensor-level human brain activity is studied during real and imaginary motor execution using functional near-infrared spectroscopy (fNIRS). Blood oxygenation and deoxygenation spatial dynamics exhibit pronounced hemispheric lateralization when performing motor tasks with the left and right hands. This fact allowed us to reveal biomarkers of hemodynamical response of the motor cortex on the motor execution, and use them for designing a sensing method for classification of the type of movement.
View Article and Find Full Text PDFThe development of new approaches to detect motor-related brain activity is key in many aspects of science, especially in brain-computer interface applications. Even though some well-known features of motor-related electroencephalograms have been revealed using traditionally applied methods, they still lack a robust classification of motor-related patterns. Here, we introduce new features of motor-related brain activity and uncover hidden mechanisms of the underlying neuronal dynamics by considering event-related desynchronization (ERD) of μ-rhythm in the sensorimotor cortex, i.
View Article and Find Full Text PDFBehavioral experiments evidence that attention is not maintained at a constant level, but fluctuates with time. Recent studies associate such fluctuations with dynamics of attention-related cortical networks, however the exact mechanism remains unclear. To address this issue, we consider functional neuronal interactions during the accomplishment of a reaction time (RT) task which requires sustained attention.
View Article and Find Full Text PDFCortico-thalamocortical networks generate sleep spindles and slow waves during non-rapid eye movement sleep, as well as paroxysmal spike-wave discharges (i.e. electroencephalogram manifestation of absence epilepsy) and 5-9-Hz oscillations in genetic rat models (i.
View Article and Find Full Text PDFThe use of extreme events theory for the analysis of spontaneous epileptic brain activity is a relevant multidisciplinary problem. It allows deeper understanding of pathological brain functioning and unraveling mechanisms underlying the epileptic seizure emergence along with its predictability. The latter is a desired goal in epileptology which might open the way for new therapies to control and prevent epileptic attacks.
View Article and Find Full Text PDFBrain-computer interfaces (BCIs) attract a lot of attention because of their ability to improve the brain's efficiency in performing complex tasks using a computer. Furthermore, BCIs can increase human's performance not only due to human-machine interactions, but also thanks to an optimal distribution of cognitive load among all members of a group working on a common task, i.e.
View Article and Find Full Text PDFThe influence of motivation and alertness on brain activity associated with visual perception was studied experimentally using the Necker cube, which ambiguity was controlled by the contrast of its ribs. The wavelet analysis of recorded multichannel electroencephalograms (EEG) allowed us to distinguish two different scenarios while the brain processed the ambiguous stimulus. The first scenario is characterized by a particular destruction of alpha rhythm (8-12 Hz) with a simultaneous increase in beta-wave activity (20-30 Hz), whereas in the second scenario, the beta rhythm is not well pronounced while the alpha-wave energy remains unchanged.
View Article and Find Full Text PDFIn order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects.
View Article and Find Full Text PDFIntermittent behavior occurs widely in nature. At present, several types of intermittencies are known and well-studied. However, consideration of intermittency has usually been limited to the analysis of cases when only one certain type of intermittency takes place.
View Article and Find Full Text PDFThis study examines the hypothesis that absence epilepsy is accompanied by disturbances of rhythmic activity in EEG during sleep. Sleep-wake architecture and time-frequency parameters of EEG were analyzed during drowsiness and sleep in WAG/Rij rats with genetic predisposition to absence epilepsy. The incidence of seizures varied in a group of 10 rats, in which 5 individuals did not develop epileptic discharges in their EEG (asymptomatic rats).
View Article and Find Full Text PDFThe risk of neurological diseases increases with age. In WAG/Rij rat model of absence epilepsy, the incidence of epileptic spike-wave discharges is known to be elevated with age. Considering close relationship between epileptic spike-wave discharges and physiologic sleep spindles, it was assumed that age-dependent increase of epileptic activity may affect time-frequency characteristics of sleep spindles.
View Article and Find Full Text PDFIn rat models of absence epilepsy, epileptic spike-wave discharges appeared in EEG spontaneously, and the incidence of epileptic activity increases with age. Spike-wave discharges and sleep spindles are known to share common thalamo-cortical mechanism, suggesting that absence seizures might affect some intrinsic properties of sleep spindles. This paper examines time-frequency EEG characteristics of anterior sleep spindles in non-epileptic Wistar and epileptic WAG/Rij rats at the age of 7 and 9 months.
View Article and Find Full Text PDFZh Vyssh Nerv Deiat Im I P Pavlova
August 2013
It is known that sleep spindles are produced by thalamo-cortical system spontaneously during the slow-wave sleep; pathological processes in thalamo-cortical network might cause absence epilepsy. The aim of this study was to examine age-dependent changes in time-frequency structure of sleep spindles in parallel to a progressive increase in amount of absence seizures in WAG/Rij rat model. EEG was consistently recorded at the age of 5, 7 and 9 months by means of epidural electrodes implanted in the frontal cortex.
View Article and Find Full Text PDFSpike-wave discharges (SWD) are electroencephalographic hallmarks of absence epilepsy. SWD are known to originate from thalamo-cortical neuronal network that normally produces sleep spindle oscillations. Although sleep spindles and SWD are considered as thalamo-cortical oscillations, functional relationship between them is not obvious.
View Article and Find Full Text PDF