Background And Objectives: Saliva is a patient-friendly matrix for therapeutic drug monitoring (TDM) but is infrequently used in routine care. This is due to the uncertainty of saliva-based TDM results to inform dosing. This study aimed to retrieve data on saliva-plasma concentration and subsequently determine the physicochemical properties that influence the excretion of drugs into saliva to increase the foundational knowledge underpinning saliva-based TDM.
View Article and Find Full Text PDFHere, we show that 3,5-bis[(1E)-2-(2,6-dichlorophenyl)ethenyl]-1H-pyrazole 2l depolymerizes microtubules and reduces the number of growing tips of microtubules. The fluorescence recovery after photobleaching experiment in live MCF-7 cells showed that pyrazole 2l suppresses spindle microtubule dynamics. Further, the compound inhibits chromosome movements, activates the spindle assembly checkpoint and blocks mitosis in MCF-7 cells.
View Article and Find Full Text PDFThe drug discovery process is a rocky path that is full of challenges, with the result that very few candidates progress from hit compound to a commercially available product, often due to factors, such as poor binding affinity, off-target effects, or physicochemical properties, such as solubility or stability. This process is further complicated by high research and development costs and time requirements. It is thus important to optimise every step of the process in order to maximise the chances of success.
View Article and Find Full Text PDFAntibacterial resistance is a prominent issue with monotherapy often leading to treatment failure in serious infections. Many mechanisms can lead to antibacterial resistance including deactivation of antibacterial agents by bacterial enzymes. Enzymatic drug modification confers resistance to β-lactams, aminoglycosides, chloramphenicol, macrolides, isoniazid, rifamycins, fosfomycin and lincosamides.
View Article and Find Full Text PDFMulti-drug resistance is increasing in the pathogenic bacterium , which is mainly responsible for meningitis and community-acquired pneumonia (CAP), highlighting the need for new anti-pneumococcal agents. We have identified a potential anti-pneumococcal agent, enol , which acts by hindering the cell division process by perturbing Z-ring dynamics inside the cell. Enol was also shown to inhibit FtsZ polymerization and induce its aggregation in vitro but does not affect the activity of tubulin and alkaline phosphatase.
View Article and Find Full Text PDFThe charge density distribution in a novel cocrystal (1) complex of 1,3-dimethylxanthine (theophylline) and propanedioic acid (malonic acid) has been determined. The molecules crystallize in the triclinic, centrosymmetric space group 1̅, with four independent molecules ( = 4) in the asymmetric unit (two molecules each of theophylline and malonic acid). Theophylline has a notably high hygroscopic nature, and numerous cocrystals have shown a significant improvement in stability to humidity.
View Article and Find Full Text PDFThe microtubule-binding taxanes, docetaxel and cabazitaxel, are administered intravenously for the treatment of castration-resistant prostate cancer (CRPC) as the oral administration of these drugs is largely hampered by their low and highly variable bioavailabilities. Using a simple, rapid, and environmentally friendly microwave-assisted protocol, we have synthesized a number of 3,5-bis(styryl)pyrazoles , thus allowing for their screening for antiproliferative activity in the androgen-independent PC3 prostate cancer cell line. Surprisingly, two of these structurally simple 3,5-bis(styryl)pyrazoles ( and ) had concentrations which gave 50% of the maximal inhibition of cell proliferation (GI) in the low micromolar range in the PC3 cell line and were thus selected for extensive further biologic evaluation (apoptosis and cell cycle analysis, and effects on tubulin and microtubules).
View Article and Find Full Text PDFSelective detection of β-alanyl aminopeptidase (BAP)-producing , , and was achieved by employing the blue-to-yellow fluorescent transition of a BAP-specific enzyme substrate, 3-hydroxy-2-(-dimethylaminophenyl)flavone derivative, incorporating a self-immolative linker to β-alanine. Upon cellular uptake and accumulation of the substrate by viable bacterial colonies, blue fluorescence was generated, while hydrolysis of the -terminal peptide bond by BAP resulted in the elimination of the self-immolative linker and the restoration of the original fluorescence of the flavone derivative.
View Article and Find Full Text PDFThe past decade has seen an increase in aspergillosis in humans and animals due to species complex members. Azole resistance is common to these infections, carrying a poor prognosis. gene mutations are the main cause of acquired azole resistance in This study aimed to determine if the azole-resistant phenotype in complex members is associated with mutations or extrolite profiles.
View Article and Find Full Text PDFIn addition to limiting the effectiveness of antimicrobial agents, antimicrobial resistance (AMR) is a significant global health concern as it is responsible for significant mortality/morbidity and increased economic burdens on healthcare systems. Diagnostic tests have been suggested as a means of prolonging the effectiveness of current antimicrobials; culture and other conventional diagnostics are hindered in their practicality as they are time- and labour intensive to perform. Point-of-care (POC) testing is performed near where the patient is being treated and can provide timely results that allow evidence based clinical interventions to be made.
View Article and Find Full Text PDFA novel, green fluorescent β-alanylstyrylcoumarin derivative was synthesized and evaluated for its performance as a fluorogenic enzyme substrate on a range of clinically relevant microorganisms. The substrate was selectively hydrolysed by β-alanyl aminopeptidase producing P. aeruginosa resulting in an on-to-off fluorescent signal.
View Article and Find Full Text PDFExperimental charge density distribution studies, complemented by quantum mechanical theoretical calculations, of a host-guest system composed of a macrocycle (1) and barbital (2) in a 1:1 ratio (3) have been carried out via high-resolution single-crystal X-ray diffraction. The data were modeled using the conventional multipole model of electron density according to the Hansen-Coppens formalism. The asymmetric unit of macrocycle 1 contained an intraannular ethanol molecule and an extraannular acetonitrile molecule, and the asymmetric unit of 3 also contained an intraannular ethanol molecule.
View Article and Find Full Text PDFIn order to retard the rate of development of antibacterial resistance, the causative agent must be identified as rapidly as possible, so that directed patient treatment and/or contact precautions can be initiated. This review highlights the challenges associated with the detection and identification of pathogenic bacteria, by providing an introduction to the techniques currently used, as well as newer techniques that are in development. Focusing on the chemical basis for these techniques, the review also provides a comparison of their advantages and disadvantages.
View Article and Find Full Text PDFInhibition of FtsZ assembly has been found to stall bacterial cell division. Here, we report the identification of a potent carbocyclic curcumin analogue (2d) that inhibits Bacillus subtilis 168 cell proliferation by targeting the assembly of FtsZ. 2d also showed potent inhibitory activity (minimum inhibitory concentrations of 2-4 mg/L) against several clinically important species of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus.
View Article and Find Full Text PDFExperimental charge density distribution studies of two polymorphic forms of piroxicam, β-piroxicam (1) and piroxicam monohydrate (2), were carried out via high-resolution single crystal X-ray diffraction experiments and multipole refinement. The asymmetric unit of (2) consists of two discrete piroxicam molecules, (2a) and (2b), and two water molecules. Geometry differs between (1) and (2) due to the zwitterionic nature of (2) which results in the rotation of the pyridine ring around the C(10)-N(2) bond by approximately 180°.
View Article and Find Full Text PDFFilamenting temperature-sensitive mutant Z (FtsZ), an essential cell division protein in bacteria, has recently emerged as an important and exploitable antibacterial target. Cytokinesis in bacteria is regulated by the assembly dynamics of this protein, which is ubiquitously present in eubacteria. The perturbation of FtsZ assembly has been found to have a deleterious effect on the cytokinetic machinery and, in turn, upon cell survival.
View Article and Find Full Text PDFSince its discovery in 2008, New Delhi metallo-β-lactamase-1 (NDM-1)-producing Enterobacteriaceae have disseminated globally, facilitated predominantly by gut colonization and the spread of plasmids carrying the bla NDM-1 gene. With few effective antibiotics against NDM-1 producers, and resistance developing to those which remain, there is an urgent need to develop new treatments. To date, most drug design in this area has been focused on developing an NDM-1 inhibitor and has been aided by the wealth of structural and mechanistic information available from high resolution x-ray crystallography and molecular modeling.
View Article and Find Full Text PDFA series of novel 8-aminophenoxazin-3-one and 7-aminophenoxazin-3-one chromogens and their corresponding β-alanine derivatives were synthesized and evaluated for their ability to detect β-alanyl aminopeptidase activity in bacteria known to hydrolyze β-alanine derivatized substrates. The results provided insight into the structural requirements for effective visualization of enzymatic activity and the mechanism of formation of phenoxazinon-3-ones. 8-Aminophenoxazin-3-one substrates 23c, 23d, and 23e were prepared in good to high overall yield and were selective for β-alanyl aminopeptidase activity in bacteria, producing a lighter agar background coloration facilitating visualization of colored colonies, with variable localization to the colonies, but had lower sensitivities for the detection of Pseudomonas aeruginosa in comparison to the analogous 7-aminophenoxazin-3-one substrates.
View Article and Find Full Text PDFThe ursane triterpenoids, asiatic acid 1 and madecassic acid 2, are the major pharmacological constituents of Centella asiatica, commonly known as Gotu Kola, which is used traditionally for the treatment of anxiety and for the improvement of cognition and memory. Using the two-electrode voltage-clamp technique, these triterpenes, and some semisynthetic derivatives, were found to exhibit selective negative modulation of different subtypes of the GABAA receptor expressed in Xenopus laevis oocytes. Despite differing by only one hydroxyl group, asiatic acid 1 was found to be a negative modulator of the GABA-induced current at α1 β2 γ2L, α2 β2 γ2L and α5 β3 γ2L GABAA receptors, while madecassic acid 2 was not.
View Article and Find Full Text PDFTo overcome the major disadvantages of cysteamine, the only registered treatment for the rare genetic disease cystinosis, nine prodrugs of γ-glutamyl-cysteamine (4) were synthesized for evaluation. Esterification of the thiol conferred oxidative stability, while sufficient lipophilicity for oral bioavailability was achieved by acylation of the α-carboxyl group of γ-glutamyl-cysteamine (4). Low cytotoxicity was observed in cultured HaCaT keratinocytes using the MTT assay, with EC50 values higher than or similar to that of cysteamine.
View Article and Find Full Text PDFPurpose: The natural products resveratrol and trans-ε-viniferin have been reported to have many beneficial effects, which include the enhancement of cognition and memory. There have been no studies which have reported the effects of these compounds on the different GABAA receptor subtypes and this study aimed to address this.
Methods: The effects of both resveratrol, and its dimer, trans-ε-viniferin, have been investigated on different GABAA receptor subtypes expressed in Xenopus laevis oocytes, using the two-electrode voltage clamp technique.
The three peroxisome proliferator-activated receptor (PPAR) isoforms; PPARα, PPARγ and PPARδ, play central roles in lipid metabolism and glucose homeostasis. Dual PPARα/γ agonists, which stimulate both PPARα and PPARγ isoforms to similar extents, are gaining popularity as it is believed that they are able to ameliorate the unwanted side effects of selective PPARα and PPARγ agonists; and may also be used to treat dyslipidemia and type 2 diabetes mellitus simultaneously. In this study, virtual screening of natural product libraries, using both structure-based and ligand-based drug discovery approaches, identified ten potential dual PPARα/γ agonist lead compounds (9-13 and 16-20).
View Article and Find Full Text PDF