Publications by authors named "Groshaus J"

Even though composite fermions in the fractional quantum Hall liquid are well established, it is not yet known up to what energies they remain intact. We probe the high-energy spectrum of the 1/3 liquid directly by resonant inelastic light scattering, and report the observation of a large number of new collective modes. Supported by our theoretical calculations, we associate these with transitions across two or more composite fermions levels.

View Article and Find Full Text PDF

Optical absorption measurements are used to probe the spin polarization in the integer and fractional quantum Hall effect regimes. The system is fully spin polarized only at filling factor nu=1 and at very low temperatures ( approximately 40 mK). A small change in filling factor (deltanu approximately +/-0.

View Article and Find Full Text PDF

Neutral spin texture (ST) excitations at nu=1/3 are directly observed for the first time by resonant inelastic light scattering. They are determined to involve two simultaneous spin flips. At low magnetic fields, the ST energy is below that of the magnetoroton minimum.

View Article and Find Full Text PDF

We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

View Article and Find Full Text PDF

We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 View Article and Find Full Text PDF

We measure the absorption spectrum of a two-dimensional electron system (2DES) in a GaAs quantum well in the presence of a perpendicular magnetic field. We focus on the absorption spectrum into the lowest Landau level around nu=1. We find that the spectrum consists of bound electron-hole complexes, trionlike and excitonlike.

View Article and Find Full Text PDF