Group living is thought to have important antipredator benefits for animals, owing to the mechanisms of shared vigilance ("many-eyes" hypothesis), risk dilution ("dilution effect" hypothesis), and relative safety in the center of the group ("selfish herd" hypothesis). However, it can also incur costs since social stimuli, such as conspecific aggression, may distract individuals from anti-predator behavior ("distracted prey" hypothesis). We simultaneously evaluated how these four different hypotheses shape anti-predator behaviors of breeding king penguins (Aptenodytes patagonicus), which aggregate into large colonies, experience frequent aggressive social interactions, and are regularly exposed to predation by giant petrels (Macronectes sp.
View Article and Find Full Text PDFA large number of studies have focused on the reactivity of the hypothalamic-pituitaryadrenal (HPA) axis and the consequences of glucocorticoids (GC) in mediating life-history trade-offs. Although short-term increases in GCs are viewed as adaptive, mobilizing energy substrates allowing animals to deal with impending threats (e.g.
View Article and Find Full Text PDFStress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator).
View Article and Find Full Text PDF'Fight-or-flight' stress responses allow animals to cope adaptively to sudden threats by mobilizing energy resources and priming the body for action. Because such responses can be costly and redirect behavior and energy from reproduction to survival, they are likely to be shaped by specific life-history stages, depending on the available energy resources and the commitment to reproduction. Here, we consider how heart rate (HR) responses to acute stressors are affected by the advancing breeding season in a colonial seabird, the king penguin (Aptenodytes patagonicus).
View Article and Find Full Text PDFInvestigating wild animals while minimizing human disturbance remains an important methodological challenge. When approached by a remote-operated vehicle (rover) which can be equipped to make radio-frequency identifications, wild penguins had significantly lower and shorter stress responses (determined by heart rate and behavior) than when approached by humans. Upon immobilization, the rover-unlike humans-did not disorganize colony structure, and stress rapidly ceased.
View Article and Find Full Text PDFBecause glucocorticoid (stress) hormones fundamentally affect various aspects of the behaviour, life history and fitness of free-living vertebrates, there is a need to understand the environmental factors shaping their variation in natural populations. Here, we examined whether spatial heterogeneity in breeding territory quality affected the stress of colonial king penguin (Aptenodytes patagonicus). We assessed the effects of local climate (wind, sun and ambient temperature) and social conditions (number of neighbours, distance to neighbours) on the baseline levels of plasma total corticosterone (CORT) in 77 incubating and 42 chick-brooding birds, breeding on territories of central or peripheral colony location.
View Article and Find Full Text PDFMicrobiologyopen
February 2013
Despite the enormous amount of data available on the importance of the gastrointestinal (GI) microbiota in vertebrate (especially mammals), information on the GI microbiota of seabirds remains incomplete. As with many seabirds, penguins have a unique digestive physiology that enables them to store large reserves of adipose tissue, protein, and lipids. This study used quantitative real-time polymerase chain reaction (qPCR) and 16S rRNA gene pyrosequencing to characterize the interspecific variations of the GI microbiota of four penguin species: the king, gentoo, macaroni, and little penguin.
View Article and Find Full Text PDFBody mass and body condition are often tightly linked to animal health and fitness in the wild and thus are key measures for ecophysiologists and behavioral ecologists. In some animals, such as large seabird species, obtaining indexes of structural size is relatively easy, whereas measuring body mass under specific field circumstances may be more of a challenge. Here, we suggest an alternative, easily measurable, and reliable surrogate of body mass in field studies, that is, body girth.
View Article and Find Full Text PDFBackground: A central question for ecologists is the extent to which anthropogenic disturbances (e.g. tourism) might impact wildlife and affect the systems under study.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2012
Surviving prolonged fasting implies closely regulated alterations in fuel provisioning to meet metabolic requirements, while preserving homeostasis. Little is known, however, of the endocrine regulations governing such metabolic adaptations in naturally fasting free-ranging animals. The hormonal responses to natural prolonged fasting and how they correlate to the metabolic adaptations observed, were investigated in subantarctic fur seal (Arctocephalus tropicalis) pups, which, because of the intermittent pattern of maternal attendance, repeatedly endure exceptionally long fasting episodes throughout their development (1-3 mo).
View Article and Find Full Text PDFA drop in body temperature allows significant energy savings in endotherms, but facultative heterothermy is usually restricted to small animals. Here we report that king penguin chicks (Aptenodytes patagonicus), which are able to fast for up to 5 months in winter, undergo marked seasonal heterothermy during this period of general food scarcity and slow-down of growth. They also experience short-term heterothermy below 20 °C in the lower abdomen during the intense (re)feeding period in spring, induced by cold meals and adverse weather.
View Article and Find Full Text PDFBackground: Birds may allocate a significant part of time to comfort behavior (e.g., preening, stretching, shaking, etc.
View Article and Find Full Text PDFContinuous growth, associated with a steady parental food supply, is a general pattern in offspring development. So that young chicks can acquire their locomotor independence, this period is usually marked by a fast maturation of muscles, during which different myosin heavy chain (MyHC) isoforms are expressed. However, parental food provisioning may fluctuate seasonally, and offspring therefore face a challenge to ensure the necessary maturation of their tissues when energy is limited.
View Article and Find Full Text PDFHeart rate (f(H)) measurement offers the possibility to monitor energy expenditure (EE) in wild animals if the EE/f(H) relationship for the species, physiological stages and activities of interest is known. This relationship has been extensively studied using oxygen consumption rate ( ) measurement in captive, repeatedly handled king penguins (Aptenodytes patagonicus). Unfortunately, the potential effects of stress on the observed relationships resulting from handling and confinement were not considered.
View Article and Find Full Text PDFSurviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.
View Article and Find Full Text PDFDuring starvation, after a short dynamic period of adaptation (phase I), a metabolic steady state is reached in which proteins are spared and lipids provide most of the energy expended [phase II (P2)]. However, protein breakdown increases dramatically once a lower threshold of body lipids is reached [phase III (P3)]. Body composition, energy intake, energy expenditure, and energy efficiency were determined in 8 groups of rats (fed, food-deprived up to P2 or P3 of starvation and refed for 3 d, 7 d, or until body mass restoration) to determine whether the kinetics of lipid and/or protein reserve recovery may be slowed down when refeeding occurs after the lipid threshold has been reached.
View Article and Find Full Text PDFFledging is a critical period in the life of a bird, notably because at this stage under-development and lack of experience in searching for food may impair survival. The behavioral changes that accompany nest departure are therefore expected to be finely tuned to body condition and growth by endocrine processes. This study examines the possible involvement of corticosterone (CORT) in the stimulation of fledging in White storks through measurement of the changes in its plasma levels in relation to growth, nutritional status and the hatching rank of nestlings.
View Article and Find Full Text PDFGen Comp Endocrinol
February 2008
This study examines the possibility that metabolic or endocrinal factors initiate fledging in the king penguin, a semi-altricial seabird species breeding a single chick on the ground. Chick fledging (departure to sea) occurred 5d after completion of the molt. It was preceded by a 16d fasting period and by a 7-fold increase in locomotor activity.
View Article and Find Full Text PDFVarious exogenous or endogenous factors may induce an emergency response in birds, redirecting current activity towards survival. In fasting, breeding penguins, the achievement of a critical energy depletion was suggested to induce egg abandonment and departure to sea for re-feeding. How such a behavioral shift is hormonally controlled remains unknown.
View Article and Find Full Text PDFMicrostructure-function relationships remain poorly understood in primary bone tissues. The relationship between bone growth rate and bone tissue type, although documented in some species by previous works, remains somewhat unclear and controversial. We assessed this relationship in a species with extreme adaptations, the king penguin (Aptenodytes patagonicus).
View Article and Find Full Text PDFBecause the yolk lipids of the king penguin (Aptenodytes patagonicus) contain the highest concentrations of long-chain n-3 polyunsaturated fatty acids yet reported for an avian species, the consequences for the establishment of the brain's fatty acid profile in the embryo were investigated. To place the results in context, the fatty acid compositions of yolk lipid and brain phospholipid of the king penguin were compared with those from three other species of free-living birds. The proportions of docosahexaenoic acid (22:6n-3; DHA) in the total lipid of the initial yolks for the Canada goose (Branta canadensis), mallard (Anas platyrhynchos), moorhen (Gallinula chloropus), and king penguin were (% w/w of fatty acids) 1.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
October 2003
This study examines the metabolic fate of total and individual yolk fatty acids (FA) during the embryonic development of the king penguin, a seabird characterized by prolonged incubation (53 days) and hatching (3 days) periods, and a high n-3/n-6 polyunsaturated FA ratio in the egg. Of the approximately 15 g of total FA initially present in the egg lipid, 87% was transferred to the embryo by the time of hatching, the remaining 13% being present in the internalized yolk sac of the chick. During the whole incubation, 83% of the transferred FA was oxidized for energy, with only 17% incorporated into embryo lipids.
View Article and Find Full Text PDFThe switch from yolk to food (myctophid fishes) as the nutrient source for the newly hatched chick of the king penguin ( Aptenodytes patagonicus) results in a profound change in the pattern of fatty acid provision. This is characterized by major increases in the proportionate intake of n-3 polyunsaturates (20:5n-3 and 22:6n-3) and long chain (C(20-24)) monounsaturates, accompanied by relatively lower levels of n-6 polyunsaturates (18:2n-6 and 20:4n-6). The effects of this change on the fatty acid composition of tissue lipids during the first month of growth, a period of tissue maturation leading to thermal emancipation, were determined.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2003
This study aims to determine whether glucose intervenes in the regulation of lipid metabolism in long-term fasting birds, using the king penguin as an animal model. Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo before, during, and after a 2-h glucose infusion under field conditions. All the birds were in the phase II fasting status (large fat stores, protein sparing) but differed by their metabolic and hormonal statuses, being either nonstressed (NSB; n = 5) or stressed (SB; n = 5).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
February 2003
This study aims to determine how glucagon intervenes in the regulation of fuel metabolism, especially lipolysis, at two stages of a spontaneous long-term fast characterized by marked differences in lipid and protein availability and/or utilization (phases II and III). Changes in the plasma concentration of various metabolites and hormones, and in lipolytic fluxes as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo in a subantarctic bird (king penguin) before, during, and after a 2-h glucagon infusion. In the two fasting phases, glucagon infusion at a rate of 0.
View Article and Find Full Text PDF