Publications by authors named "Grootegoed J"

Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11 model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11 mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes.

View Article and Find Full Text PDF

In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint.

View Article and Find Full Text PDF

In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation.

View Article and Find Full Text PDF

The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype.

View Article and Find Full Text PDF

Genome-wide gene expression studies have indicated that the eukaryotic genome contains many gene pairs showing overlapping sense and antisense transcription. Regulation of these coding and/or noncoding gene pairs involves intricate regulatory mechanisms. In the present study, we utilized an enhanced green fluorescent protein (EGFP)-tagged reporter plasmid cis linked to a doxycycline-inducible antisense promoter, generating antisense transcription that fully overlaps EGFP, to study the mechanism and dynamics of gene silencing after induction of noncoding antisense transcription in undifferentiated and differentiating mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Background: In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes.

View Article and Find Full Text PDF

In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI) in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs) leads to reactivation of the inactive X chromosome (Xi), we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions.

View Article and Find Full Text PDF

X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors.

View Article and Find Full Text PDF

In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI).

View Article and Find Full Text PDF

The testis-specific serine/threonine protein kinases TSSK1 and TSSK2 are known to be essential for male fertility, in mice. The enzymes are present in elongating spermatids, and targeted deletion of the two genes Tssk1 and Tssk2 results in dysregulation of spermiogenesis. The mouse genes are genetically closely linked, forming a Tssk1-Tssk2 tandem.

View Article and Find Full Text PDF

In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent) endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs).

View Article and Find Full Text PDF

Background: CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear.

View Article and Find Full Text PDF

Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells.

View Article and Find Full Text PDF

Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome.

View Article and Find Full Text PDF

RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB) repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation.

View Article and Find Full Text PDF

RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs.

View Article and Find Full Text PDF

The use of bacterial artificial chromosomes (BACs) provides a consistent and high targeting efficiency of homologous recombination in embryonic stem (ES) cells, facilitated by long stretches of sequence homology. Here, we introduce a BAC targeting method which employs restriction fragment length polymorphisms (RFLPs) in targeted polymorphic C57BL/6/Cast/Ei F1 mouse ES cell lines to identify properly targeted ES cell clones. We demonstrate that knockout alleles can be generated either by targeting of an RFLP located in the open reading frame thereby disrupting the RFLP and ablating gene function, or by introduction of a transcription stop cassette that prematurely stops transcription of an RFLP located downstream of the stop cassette.

View Article and Find Full Text PDF

Based on DNA analysis of a historical case, the authors describe how a female athlete can be unknowingly confronted with the consequences of a disorder of sex development resulting in hyperandrogenism emerging early in her sports career. In such a situation, it is harmful and confusing to question sex and gender. Exposure to either a low or high level of endogenous testosterone from puberty is a decisive factor with respect to sexual dimorphism of physical performance.

View Article and Find Full Text PDF

In somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators and autosomally encoded suppressors controlling Xist. Spreading of Xist RNA leads to silencing of the X chromosome in cis.

View Article and Find Full Text PDF

Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis.

View Article and Find Full Text PDF

Background: The ubiquitin-conjugating enzyme HR6B is required for spermatogenesis in mouse. Loss of HR6B results in aberrant histone modification patterns on the trancriptionally silenced X and Y chromosomes (XY body) and on centromeric chromatin in meiotic prophase. We studied the relationship between these chromatin modifications and their effects on global gene expression patterns, in spermatocytes and spermatids.

View Article and Find Full Text PDF

During male meiotic prophase in mammals, X and Y are in a largely unsynapsed configuration, which is thought to trigger meiotic sex chromosome inactivation (MSCI). In avian species, females are ZW, and males ZZ. Although Z and W in chicken oocytes show complete, largely heterologous synapsis, they too undergo MSCI, albeit only transiently.

View Article and Find Full Text PDF

The cytoplasmic chromatoid body (CB) organizes mRNA metabolism and small regulatory RNA pathways, in relation to haploid gene expression, in mammalian round spermatids. However, little is known about functions and fate of the CB at later steps of spermatogenesis, when elongating spermatids undergo chromatin compaction and transcriptional silencing. In mouse elongating spermatids, we detected accumulation of the testis-specific serine/threonine kinases TSSK1 and TSSK2, and the substrate TSKS, in a ring-shaped structure around the base of the flagellum and in a cytoplasmic satellite, both corresponding to structures described to originate from the CB.

View Article and Find Full Text PDF

In somatic cells of female placental mammals, one X chromosome is inactivated to minimize sex-related dosage differences of X-encoded genes. Random X chromosome inactivation (XCI) in the embryo is a stochastic process, in which each X has an independent probability to initiate XCI, triggered by the nuclear concentration of one or more X-encoded XCI-activators. Here, we identify the E3 ubiquitin ligase RNF12 as an important XCI-activator.

View Article and Find Full Text PDF

Purpose: Wnt signaling regulates the fine balance between stemness and differentiation. Here, the role of Wnt signaling to maintain the balance between estrogen-induced proliferation and progesterone-induced differentiation during the menstrual cycle, as well as during the induction of hyperplasia and carcinogenesis of the endometrium, was investigated.

Experimental Design: Endometrial gene expression profiles from estradiol (E(2)) and E(2) + medroxyprogesterone acetate-treated postmenopausal patients were combined with profiles obtained during the menstrual cycle (PubMed; GEO DataSets).

View Article and Find Full Text PDF