Publications by authors named "Grondelle R"

In high light, the antenna system in oxygenic photosynthetic organisms switches to a photoprotective mode, dissipating excess energy in a process called non-photochemical quenching (NPQ). Diatoms exhibit very efficient NPQ, accompanied by a xanthophyll cycle in which diadinoxanthin is de-epoxidized into diatoxanthin. Diatoms accumulate pigments from this cycle in high light, and exhibit faster and more pronounced NPQ.

View Article and Find Full Text PDF

In this work, we applied Stark fluorescence spectroscopy to an iron-stressed cyanobacterial membrane to reveal key insights about the electronic structures and excited state dynamics of the two important pigment-protein complexes, IsiA and PSII, both of which prevail simultaneously within the membrane during iron deficiency and whose fluorescence spectra are highly overlapped and hence often hardly resolved by conventional fluorescence spectroscopy. Thanks to the ability of Stark fluorescence spectroscopy, the fluorescence signatures of the two complexes could be plausibly recognized and disentangled. The systematic analysis of the SF spectra, carried out by employing standard Liptay formalism with a realistic spectral deconvolution protocol, revealed that the IsiA in an intact membrane retains almost identical excited state electronic structures and dynamics as compared to the isolated IsiA we reported in our earlier study.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has added new urgency to the study of viral mechanisms of infection. But while vaccines offer a measure of protection against this specific outbreak, a new era of pandemics has been predicted. In addition to this, COVID-19 has drawn attention to post-viral syndromes and the healthcare burden they entail.

View Article and Find Full Text PDF

Stack engineering, an atomic-scale metamaterial strategy, enables the design of optical and electronic properties in van der Waals heterostructure devices. Here we reveal the optoelectronic effects of stacking-induced strong coupling between atomic motion and interlayer excitons in WSe/MoSe heterojunction photodiodes. To do so, we introduce the photocurrent spectroscopy of a stack-engineered photodiode as a sensitive technique for probing interlayer excitons, enabling access to vibronic states typically found only in molecule-like systems.

View Article and Find Full Text PDF

Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions.

View Article and Find Full Text PDF

Under excess illumination, photosystem II of plants dissipates excess energy through the quenching of chlorophyll fluorescence in the light harvesting antenna. Various models involving chlorophyll quenching by carotenoids have been proposed, including (i) direct energy transfer from chlorophyll to the low-lying optically forbidden carotenoid S state, (ii) formation of a collective quenched chlorophyll-carotenoid S excitonic state, (iii) chlorophyll-carotenoid charge separation and recombination, and (iv) chlorophyll-chlorophyll charge separation and recombination. In previous work, the first three processes were mimicked in model systems: in a Zn-phthalocyanine-carotenoid dyad with an amide linker, direct energy transfer was observed by femtosecond transient absorption spectroscopy, whereas in a Zn-phthalocyanine-carotenoid dyad with an amine linker excitonic quenching was demonstrated.

View Article and Find Full Text PDF

To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished.

View Article and Find Full Text PDF

Despite extensive study, mysteries remain regarding the highly efficient ultrafast charge separation processes in photosynthetic reaction centers (RCs). In this work, transient Stark signals were found to be present in ultrafast two-dimensional electronic spectra recorded for purple bacterial RCs at 77 K. These arose from the electric field that is inherent to the intradimer charge-transfer intermediate of the bacteriochlorophyll pair (P), PP.

View Article and Find Full Text PDF

Reported herein is a Stark fluorescence spectroscopy study performed on photosystem II core antenna complexes CP43 and CP47 in their native and aggregated states. The systematic mathematical modeling of the Stark fluorescence spectra with the aid of conventional Liptay formalism revealed that induction of aggregation in both the core antenna complexes via detergent removal results in a single quenched species characterized by a remarkably broad and inhomogenously broadened emission lineshape peaking around 700 nm. The quenched species possesses a fairly large magnitude of charge-transfer character.

View Article and Find Full Text PDF

The Lhca4 antenna complex of plant Photosystem I (PSI) is characterized by extremely red-shifted and broadened absorption and emission bands from its low-energy chlorophylls (Chls). The mixing of a charge-transfer (CT) state with the excited state manifold causing these so-called red forms results in highly complicated multi-component excited energy transfer (EET) kinetics within the complex. The two-dimensional electronic spectroscopy experiments presented here reveal that EET towards the CT state occurs on three timescales: fast from the red Chls (within 1 ps), slower (5-7 ps) from the stromal side Chls, and very slow (100-200 ps) from a newly discovered 690 nm luminal trap.

View Article and Find Full Text PDF

Photosynthesis in plants starts with the capture of photons by light-harvesting complexes (LHCs). Structural biology and spectroscopy approaches have led to a map of the architecture and energy transfer pathways between LHC pigments. Still, controversies remain regarding the role of specific carotenoids in light-harvesting and photoprotection, obligating the need for high-resolution techniques capable of identifying excited-state signatures and molecular identities of the various pigments in photosynthetic systems.

View Article and Find Full Text PDF

Photosynthesis achieves near unity light-harvesting quantum efficiency yet it remains unknown whether there exists a fundamental organizing principle giving rise to robust light harvesting in the presence of dynamic light conditions and noisy physiological environments. Here, we present a noise-canceling network model that relates noisy physiological conditions, power conversion efficiency, and the resulting absorption spectra of photosynthetic organisms. Using light conditions in full solar exposure, light filtered by oxygenic phototrophs, and light filtered under seawater, we derived optimal absorption characteristics for efficient solar power conversion.

View Article and Find Full Text PDF

Phycobilisomes (PBs) absorb light and supply downstream photosynthetic processes with excitation energy in many cyanobacteria and algae. In response to a sudden increase in light intensity, excess excitation energy is photoprotectively dissipated in PBs by means of the orange carotenoid protein (OCP)-related mechanism or via a light-activated intrinsic decay channel. Recently, we have identified that both mechanisms are associated with far-red emission states.

View Article and Find Full Text PDF

Excitation decay in closed Photosystem I (PSI) isolated from cyanobacterium Synechocystis sp. PCC 6803 and dissolved in a buffer solution occurs predominantly with a ~ 24-ps lifetime, as measured both by time-resolved fluorescence and transient absorption. The same PSI particles deposited in mesoporous matrix made of TiO nanoparticles exhibit significantly accelerated excitation decay dominated by a ~ 6-ps component.

View Article and Find Full Text PDF

Because of their peculiar but intriguing photophysical properties, peridinin-chlorophyll-protein complexes (PCPs), the peripheral light-harvesting antenna complexes of photosynthetic dinoflagellates have been unique targets of multidimensional theoretical and experimental investigations over the last few decades. The major light-harvesting chlorophyll a (Chl a) pigments of PCP are hypothesized to be spectroscopically heterogeneous. To study the spectral heterogeneity in terms of electrostatic parameters, we, in this study, implemented Stark fluorescence spectroscopy on PCP isolated from the dinoflagellate Amphidinium carterae.

View Article and Find Full Text PDF

Plasmonic coupling of metallic nanoparticles and adjacent pigments can dramatically increase the brightness of the pigments due to the enhanced local electric field. Here, we demonstrate that the fluorescence brightness of a single plant light-harvesting complex (LHCII) can be significantly enhanced when coupled to a gold nanorod (AuNR). The AuNRs utilized in this study were prepared via chemical reactions, and the hybrid system was constructed using a simple and economical spin-assisted layer-by-layer technique.

View Article and Find Full Text PDF

Understanding the mechanism behind the near-unity efficiency of primary electron transfer in reaction centers is essential for designing performance-enhanced artificial solar conversion systems to fulfill mankind's growing demands for energy. One of the most important challenges is distinguishing electronic and vibrational coherence and establishing their respective roles during charge separation. In this work we apply two-dimensional electronic spectroscopy to three structurally-modified reaction centers from the purple bacterium Rhodobacter sphaeroides with different primary electron transfer rates.

View Article and Find Full Text PDF

The main light-harvesting pigment-protein complex of cyanobacteria and certain algae is the phycobilisome, which harvests sunlight and regulates the flow of absorbed energy to provide the photochemical reaction centres with a constant energy throughput. At least two light-driven mechanisms of excited energy quenching in phycobilisomes have been identified: the dominant mechanism in many strains of cyanobacteria depends on the orange carotenoid protein (OCP), while the second mechanism is intrinsically available to a phycobilisome and is possibly activated faster than the former. Recent single molecule spectroscopy studies have shown that far-red (FR) emission states are related to the OCP-dependent mechanism and it was proposed that the second mechanism may involve similar states.

View Article and Find Full Text PDF

Biological systems are dynamical, constantly exchanging energy and matter with the environment in order to maintain the non-equilibrium state synonymous with living. Developments in observational techniques have allowed us to study biological dynamics on increasingly small scales. Such studies have revealed evidence of quantum mechanical effects, which cannot be accounted for by classical physics, in a range of biological processes.

View Article and Find Full Text PDF

Protein film photoelectrochemistry has previously been used to monitor the activity of photosystem II, the water-plastoquinone photooxidoreductase, but the mechanistic information attainable from a three-electrode setup has remained limited. Here we introduce the four-electrode rotating ring disk electrode technique for quantifying light-driven reaction kinetics and mechanistic pathways in real time at the enzyme-electrode interface. This setup allows us to study photochemical HO oxidation in photosystem II and to gain an in-depth understanding of pathways that generate reactive oxygen species.

View Article and Find Full Text PDF

Transient absorption spectroscopy has been applied to investigate the energy dissipation mechanisms in the nonameric fucoxanthin-chlorophyll-a,c-binding protein FCPb of the centric diatom Cyclotella meneghiniana. FCPb complexes in their unquenched state were compared with those in two types of quenching environments, namely aggregation-induced quenching by detergent removal, and clustering via incorporation into liposomes. Applying global and target analysis, in combination with a fluorescence lifetime study and annihilation calculations, we were able to resolve two quenching channels in FCPb that involve chlorophyll-a pigments for FCPb exposed to both quenching environments.

View Article and Find Full Text PDF

We model the energy transfer dynamics in the Lhca4 peripheral antenna of photosystem I from higher plants. Equilibration between the bulk exciton levels of the antenna and the red-shifted charge-transfer (CT) states is described using the numerically inexpensive Redfield-Förster approach and exact hierarchical equation (HEOM) method. We propose a compartmentalization scheme allowing a quantitatively correct description of the dynamics with the Redfield-Förster theory, including the exciton-type relaxation within strongly coupled compartments and hopping-type migration between them.

View Article and Find Full Text PDF

Photosynthetic organisms have found various smart ways to cope with unexpected changes in light conditions. In many cyanobacteria, the lethal effects of a sudden increase in light intensity are mitigated mainly by the interaction between phycobilisomes (PBs) and the orange carotenoid protein (OCP). The latter senses high light intensities by means of photoactivation and triggers thermal energy dissipation from the PBs.

View Article and Find Full Text PDF

Following the observation of coherent oscillations in nonlinear spectra of photosynthetic pigment protein complexes, in particular, phycobilliproteins such as PC645, coherent vibronic transport has been suggested as a design principle for novel light-harvesting materials. Vibronic transport between energetically remote pigments is coherent when the presence of a vibration resonant with the electronic energy gap supports transient delocalization between the electronic excited states. We establish the mechanism of vibronic transport for a model heterodimer across a wide range of molecular parameter values.

View Article and Find Full Text PDF