Publications by authors named "Groisman E"

Human dietary choices control the gut microbiome. Industrialized populations consume abundant glucose and fructose, resulting in microbe-dependent intestinal disorders. Simple sugars inhibit the carbohydrate utilization regulator (Cur), a transcription factor in the prominent gut bacterial phylum, .

View Article and Find Full Text PDF

In all domains of life, Hsp70 chaperones preserve protein homeostasis by promoting protein folding and degradation and preventing protein aggregation. We now report that the Hsp70 from the bacterial pathogen Salmonella enterica serovar Typhimurium-termed DnaK-independently reduces protein synthesis in vitro and in S. Typhimurium facing cytoplasmic Mg2+ starvation, a condition encountered during infection.

View Article and Find Full Text PDF

Nutrient starvation of beneficial bacteria helps them colonize the human gut.

View Article and Find Full Text PDF

Horizontal gene transfer advances bacterial evolution. To benefit from horizontally acquired genes, enteric bacteria must overcome silencing caused when the widespread heat-stable nucleoid structuring (H-NS) protein binds to AT-rich horizontally acquired genes. This ability had previously been ascribed to both anti-silencing proteins outcompeting H-NS for binding to AT-rich DNA and RNA polymerase initiating transcription from alternative promoters.

View Article and Find Full Text PDF

Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology.

View Article and Find Full Text PDF

The mammalian gut microbiota is a critical human health determinant with therapeutic potential for remediation of many diseases. The host diet is a key factor governing the gut microbiota composition by altering nutrient availability and supporting the expansion of distinct microbial populations. Diets rich in simple sugars modify the abundance of microbial subsets, enriching for microbiotas that elicit pathogenic outcomes.

View Article and Find Full Text PDF

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut.

View Article and Find Full Text PDF
Article Synopsis
  • Protein synthesis is vital for cell growth but is energy-intensive; researchers explore how cells manage this under starvation.
  • An identified protein, EF-G2, in the bacterium Bacteroides thetaiotaomicron, allows for mRNA-tRNA translocation during protein synthesis without using energy from GTP.
  • EF-G2 is more abundant during carbon starvation, plays a key role in sustaining slow protein synthesis, and has a unique region responsible for its GTPase inactivity, highlighting a strategy for energy-efficient protein production.
View Article and Find Full Text PDF

Horizontal gene transfer drives bacterial evolution. To confer new properties, horizontally acquired genes must overcome gene silencing by nucleoid-associated proteins, such as the heat-stable nucleoid structuring (H-NS) protein. Enteric bacteria possess proteins that displace H-NS from foreign genes, form nonfunctional oligomers with H-NS, and degrade H-NS, raising the question of whether any of these mechanisms play a role in overcoming foreign gene silencing in vivo.

View Article and Find Full Text PDF

Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes.

View Article and Find Full Text PDF

Organisms often harbor seemingly redundant proteins. In the bacterium Salmonella enterica serovar Typhimurium (S. Typhimurium), the RNA chaperones CspC and CspE appear to play redundant virulence roles because a mutant lacking both chaperones is attenuated, whereas mutants lacking only one exhibit wild-type virulence.

View Article and Find Full Text PDF

Mg is the most abundant divalent cation in living cells. It is essential for charge neutralization, macromolecule stabilization, and the assembly and activity of ribosomes and as a cofactor for enzymatic reactions. When experiencing low cytoplasmic Mg, bacteria adopt two main strategies: They increase the abundance and activity of Mg importers and decrease the abundance of Mg-chelating ATP and rRNA.

View Article and Find Full Text PDF

DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life.

View Article and Find Full Text PDF

Choosing what scientific project to pursue is the most important decision that scientists at all levels continually face. Time devoted to a project can further desirable knowledge and advance a career or cost years in lost opportunity. Knowing what to consider before embarking on a specific scientific journey, as well as when to drop a project and change course, offers a way of practicing science that keeps us mindful of what is relevant at a given time and place while preserving our freedom to explore the most exciting findings.

View Article and Find Full Text PDF

The PhoP/PhoQ two-component system governs virulence, Mg homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites.

View Article and Find Full Text PDF

Proteolysis is a fundamental property of all living cells. In the bacterium Salmonella enterica serovar Typhimurium, the HspQ protein controls the specificities of the Lon and ClpAP proteases. Upon acetylation, HspQ stops being a Lon substrate and no longer enhances proteolysis of the Lon substrate Hha.

View Article and Find Full Text PDF

Phosphorus (P) is an essential component of core biological molecules. In bacteria, P is acquired mainly as inorganic orthophosphate (Pi) and assimilated into adenosine triphosphate (ATP) in the cytoplasm. Although P is essential, excess cytosolic Pi hinders growth.

View Article and Find Full Text PDF

When cells run out of nutrients, the growth rate greatly decreases. Here, we report that microorganisms, such as the bacterium serovar Typhimurium, speed up the return to a rapid growth state by preventing the proteolysis of functional proteins by ATP-dependent proteases while in the slow-growth state or stationary phase. This reduction in functional protein degradation resulted from a decrease in the intracellular concentration of ATP that was nonetheless sufficient to allow the continued degradation of nonfunctional proteins by the same proteases.

View Article and Find Full Text PDF

DNA supercoiling is essential for all living cells because it controls all processes involving DNA. In bacteria, global DNA supercoiling results from the opposing activities of topoisomerase I, which relaxes DNA, and DNA gyrase, which compacts DNA. These enzymes are widely conserved, sharing >91% amino acid identity between the closely related species Escherichia coli and Salmonella enterica serovar Typhimurium.

View Article and Find Full Text PDF

Horizontally acquired genes are typically regulated by ancestral regulators. This regulation enables expression of horizontally acquired genes to be coordinated with that of preexisting genes. Here, we report a singular example of the opposite regulation: a horizontally acquired gene that controls an ancestral regulator, thereby promoting bacterial virulence.

View Article and Find Full Text PDF

Host organisms utilize nutritional immunity to limit the availability of nutrients essential to an invading pathogen. Nutrients may include amino acids, nucleotide bases, and transition metals, the essentiality of which varies among pathogens. The mammalian macrophage protein Slc11a1 (previously Nramp1) mediates resistance to several intracellular pathogens.

View Article and Find Full Text PDF

All cells require Mg to replicate and proliferate. The macrophage protein Slc11a1 is proposed to protect mice from invading microbes by causing Mg starvation in host tissues. However, the Mg transporter MgtB enables the facultative intracellular pathogen serovar Typhimurium to cause disease in mice harboring a functional Slc11a1 protein.

View Article and Find Full Text PDF

DNA supercoiling (DS) is essential for life because it controls critical processes, including transcription, replication, and recombination. Current methods to measure DNA supercoiling are laborious and unable to examine single cells. Here, we report a method for high-throughput measurement of bacterial DNA supercoiling luorescent valuation of NA upercoiling (FEDS) utilizes a plasmid harboring the gene for a green fluorescent protein transcribed by a discovered promoter that responds exclusively to DNA supercoiling and the gene for a red fluorescent protein transcribed by a constitutive promoter as the internal standard.

View Article and Find Full Text PDF

Antibiotics constitute one of the cornerstones of modern medicine. However, individuals may succumb to a bacterial infection if a pathogen survives exposure to antibiotics. The ability of bacteria to survive bactericidal antibiotics results from genetic changes in the preexisting bacterial genome, from the acquisition of genes from other organisms, and from nonheritable phenomena that give rise to antibiotic tolerance.

View Article and Find Full Text PDF