The heparan sulfate (HS)-rich extracellular matrix (ECM) serves as an initial interaction site for the homotrimeric spike (S) protein of SARS-CoV-2 to facilitate subsequent docking to angiotensin-converting enzyme 2 (ACE2) receptors and cellular infection. More recent variants, notably Omicron, have evolved by swapping several amino acids to positively charged residues to enhance the interaction of the S-protein trimer with the negatively charged HS. However, these enhanced interactions may reduce Omicron's ability to move through the HS-rich ECM to effectively find ACE2 receptors and infect cells, raising the question of how to mechanistically explain HS-associated viral movement.
View Article and Find Full Text PDFThe Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved.
View Article and Find Full Text PDFDuring their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate.
View Article and Find Full Text PDFGlypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells.
View Article and Find Full Text PDFPatterns of gene expression, cell growth and cell-type specification during development are often regulated by morphogens. Morphogens are signalling molecules produced by groups of source cells located tens to hundreds of micrometers distant from the responding tissue and are thought to regulate the fate of receiving cells in a direct, concentration-dependent manner. The mechanisms that underlie scalable yet robust morphogen spread to form the activity gradient, however, are not well understood and are currently intensely debated.
View Article and Find Full Text PDFMorphogens determine cellular differentiation in many developing tissues in a concentration dependent manner. As a central model for gradient formation during animal development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in the wing disc. Although heparan sulfate (HS) expression in the disc is essential for this process, it is not known whether HS regulates Hh signaling and spread in a direct or in an indirect manner.
View Article and Find Full Text PDFCellular differentiation is directly determined by concentration gradients of morphogens. As a central model for gradient formation during development, Hedgehog (Hh) morphogens spread away from their source to direct growth and pattern formation in Drosophila wing and eye discs. What is not known is how extracellular Hh spread is achieved and how it translates into precise gradients.
View Article and Find Full Text PDFBone morphogenetic proteins (BMP) are powerful regulators of cellular processes such as proliferation, differentiation, and apoptosis. However, the specific molecular requirements controlling the bioavailability of BMPs in the extracellular matrix (ECM) are not yet fully understood. Our previous work showed that BMPs are targeted to the ECM as growth factor-prodomain (GF-PD) complexes (CPLXs) via specific interactions of their PDs.
View Article and Find Full Text PDFTwo posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc).
View Article and Find Full Text PDFBiochem Soc Trans
November 2021
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release.
View Article and Find Full Text PDFThe Sonic hedgehog (Shh) pathway controls embryonic development and tissue homeostasis after birth. Long-standing questions about this pathway include how the dual-lipidated, firmly plasma membrane-associated Shh ligand is released from producing cells to signal to distant target cells and how the resistance-nodulation-division transporter Dispatched 1 (Disp, also known as Disp1) regulates this process. Here, we show that inactivation of Disp in Shh-expressing human cells impairs proteolytic Shh release from its lipidated terminal peptides, a process called ectodomain shedding.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR) T-cell therapy of pediatric sarcomas is challenged by the paucity of targetable cell surface antigens. A candidate target in osteosarcoma (OS) is the ganglioside G , but heterogeneous expression of G limits its value.
Aim: We aimed to identify mechanisms that upregulate G target expression in OS.
Hedgehog (Hh) morphogens are involved in embryonic development and stem cell biology and, if misregulated, can contribute to cancer. One important post-translational modification with profound impact on Hh biofunction is its C-terminal cholesteroylation during biosynthesis. The current hypothesis is that the cholesterol moiety is a decisive factor in Hh association with the outer plasma membrane leaflet of producing cells, cell-surface Hh multimerization, and its transport and signaling.
View Article and Find Full Text PDFLipidated morphogens can spread within tissues to regulate cell fate during development or tissue repair. How these insoluble molecules reach distant target cells remains unclear. Reporting in Nature, McGough et al.
View Article and Find Full Text PDFDisruption of the Heparan sulfate (HS)-biosynthetic gene N-acetylglucosamine N-Deacetylase/N-sulfotransferase 1 () during nervous system development causes malformations that are composites of those caused by mutations of multiple HS binding growth factors and morphogens. However, the role of function in adult brain physiology is less explored. Therefore, we generated mice bearing a Purkinje-cell-specific deletion in gene function by using Cre/loxP technology under the control of the Purkinje cell protein 2 (Pcp2/L7) promotor, which results in HS undersulfation.
View Article and Find Full Text PDFMyelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter.
View Article and Find Full Text PDFFabry disease (FD) is a lysosomal storage disease, treatable by enzyme replacement therapy (ERT) that substitutes deficient α-galactosidase A (AGAL). The formation of neutralising anti-drug antibodies (ADA) inhibiting AGAL activity during infusion is associated with disease progression in affected male patients. In this study we analysed if ADAs also inhibit endothelial enzyme uptake as well as intracellular enzyme activity.
View Article and Find Full Text PDFSonic hedgehog (Shh) signaling plays a tumor-promoting role in many epithelial cancers. Cancer cells produce soluble a Shh that signals to distant stromal cells that express the receptor Patched (Ptc). These receiving cells respond by producing other soluble factors that promote cancer cell growth, generating a positive feedback loop.
View Article and Find Full Text PDFAlthough hundreds of cytosolic or transmembrane molecules form the primary cilium, few secreted molecules are known to contribute to ciliogenesis. Here, homologous secreted metalloproteases ADAMTS9 and ADAMTS20 are identified as ciliogenesis regulators that act intracellularly. Secreted and furin-processed ADAMTS9 bound heparan sulfate and was internalized by LRP1, LRP2 and clathrin-mediated endocytosis to be gathered in Rab11 vesicles with a unique periciliary localization defined by super-resolution microscopy.
View Article and Find Full Text PDFMetazoan Hedgehog (Hh) morphogens are essential regulators of growth and patterning at significant distances from their source, despite being produced as N-terminally palmitoylated and C-terminally cholesteroylated proteins, which firmly tethers them to the outer plasma membrane leaflet of producing cells and limits their spread. One mechanism to overcome this limitation is proteolytic processing of both lipidated terminal peptides, called shedding, but molecular target site requirements for effective Hh shedding remained undefined. In this work, by using as a model, we show that mutagenesis of the N-terminal Cardin-Weintraub (CW) motif inactivates recombinant Hh proteins to variable degrees and, if overexpressed in the same compartment, converts them into suppressors of endogenous Hh function.
View Article and Find Full Text PDFAll Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release.
View Article and Find Full Text PDFCell fate determination during development often requires morphogen transport from producing to distant responding cells. Hedgehog (Hh) morphogens present a challenge to this concept, as all Hhs are synthesized as terminally lipidated molecules that form insoluble clusters at the surface of producing cells. While several proposed Hh transport modes tie directly into these unusual properties, the crucial step of Hh relay from producing cells to receptors on remote responding cells remains unresolved.
View Article and Find Full Text PDF