Publications by authors named "Gro H Olsen"

We compared inter-species sensitivity to a model narcotic compound, 2-Methylnaphthalene, to test if taxonomical relatedness, feeding guilds, and trophic level govern species sensitivities on species distributed in different regions. We fitted a toxicokinetic-toxicodynamic model to survival patterns over time for 26 species using new and raw data from the literature. Species sensitivity distributions provided little insight into understanding patterns in inter-species sensitivity.

View Article and Find Full Text PDF

In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation.

View Article and Find Full Text PDF

Concentration dependent differences in acute and long-term effects of a 48 h exposure to mechanically or chemically dispersed crude oil were assessed on juvenile lumpsucker (Cyclopterus lumpus). Acute or post-exposure mortality was only observed at oil concentrations representing higher concentrations than reported after real oil spills. Acute mortality was more apparent in chemically than mechanically dispersed oil treatments whereas comparable EC50s were observed for narcosis.

View Article and Find Full Text PDF

Due to a northward shift in oil and gas activities, there is an increasing need to understand the potential anthropogenic impacts of oil-related compounds on sub-Arctic and Arctic organisms, particularly those in coastal habitats. Capelin (Mallotus villosus), a key fish species in the Barents Sea ecosystem, undertakes aggregated spawning at both intertidal and subtidal coastal localities in northern Norway. To investigate the sensitivity of capelin embryos to oil compounds, newly fertilized capelin eggs were collected from a spawning beach and exposed until hatch (32 days) to either the water soluble fraction of crude oil or the single PAH compound, pyrene.

View Article and Find Full Text PDF

Reliable risk assessment approaches for Arctic environments are requested to manage potential impacts associated with increased activities in Arctic regions. We performed toxicity tests on Arctic and temperate species exposed to the narcotic acting oil component, 2-methyl naphthalene. The experimental results were used to quantify concentration causing lethality to 50% of exposed individuals and no-effect concentration (individual level).

View Article and Find Full Text PDF

Potential contamination of polar regions due to increasing oil exploitation and transportation poses risks to marine species. Risk assessments for polar marine species or ecosystems are mostly based on toxicity data obtained for temperate species. Yet, it is unclear whether toxicity data of temperate organisms are representative for polar species and ecosystems.

View Article and Find Full Text PDF

In an international collaborative effort, an impact analysis tool is being developed to predict the effect of accidental oil spills on recruitment and production of Atlantic cod (Gadus morhua) in the Barents Sea. The tool consisted of three coupled ecological models that describe (1) plankton biomass dynamics, (2) cod larvae growth, and (3) fish stock dynamics. The discussions from a series of workshops are presented in which variables and parameters of the first two ecological models were listed that may be affected by oil-related compounds.

View Article and Find Full Text PDF

Offshore oil and gas activities have gained momentum in the European Arctic, raising concerns of the potential impact of oil-related chemicals on the polar marine ecosystem, notably on sea ice communities. Herein, malformations on embryos of the Arctic sea ice amphipod Gammaruswilkitzkii exposed to the water soluble fraction of oil were studied. The females ranged from development stage three to nine.

View Article and Find Full Text PDF

Increasing offshore oil and gas activities in the European Arctic has raised concerns of the potential anthropogenic impact of oil-related compounds on the polar marine ecosystem. We measured cellular energy allocation (CEA) in the sea ice amphipod Gammarus wilkitzkii after exposure for one month to the water soluble fraction (WSF) of oil. The CEA biomarker measures the energy budget of organisms by biochemically assessing changes in carbohydrates, protein and lipid content as well as the electron transport system activity.

View Article and Find Full Text PDF

We studied cellular energy allocation (CEA) in three Arctic benthic species (Gammarus setosus (Amphipoda), Onisimus litoralis (Amphipoda), and Liocyma fluctuosa (Bivalvia)) exposed to oil-related compounds. The CEA biomarker measures the energy budget of organisms by biochemically assessing changes in energy available (carbohydrates, protein and lipid content) and the integrated energy consumption (electron transport system activity (ETS) as the cellular aspect of respiration). Energy budget was measured in organisms subjected to water-accommodated fraction (WAF) of crude oil and drill cuttings (DC) to evaluate whether these compounds affect the energy metabolism of the test species.

View Article and Find Full Text PDF

Space-use was examined in 54 female polar bears (Ursus maritimus) from Svalbard and the Barents Sea that were collared with satellite transmitters to provide information on their spatial positions and annual home range sizes. Plasma samples from the same animals were analyzed for concentrations of six relevant PCB congeners (PCB-99, -153, -156, -180, -194, and -118). Factors related to space-use strategy (such as home range size; annual, spring, and winter longitudinal position; and spring and summer latitudinal position) were important determinants of PCB concentrations in plasma.

View Article and Find Full Text PDF