Aims/hypothesis: Normalisation of blood glucose in individuals with diabetes is recommended to reduce development of diabetic complications. However, risk of severe hypoglycaemia with intensive insulin therapy is a major obstacle that prevents many individuals with diabetes from obtaining the recommended reduction in HbA. Inhibition of glucagon receptor signalling and liver-preferential insulin action have been shown individually to have beneficial effects in preclinical models and individuals with diabetes (i.
View Article and Find Full Text PDFBackground: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells.
Methods: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells.
Results: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter.
Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling.
View Article and Find Full Text PDFThe goal of the present study was to determine whether loss of the insulin receptor alters the molecular landscape of the intestinal mucosa, using intestinal-epithelial insulin receptor knockout (IE-irKO) mice and both genetic (IRfl/fl and Villin-cre) controls. Quantitative proteomic analysis by liquid chromatography mass spectrometry was applied to jejunal and colonic mucosa from mice fed a normal chow diet and mice fed a Western diet (WD). Jejunal mucosa from IE-irKO mice demonstrated alterations in all intestinal cell lineages: Paneth, goblet, absorptive, and enteroendocrine cells.
View Article and Find Full Text PDFThe role of the intestinal insulin receptor (IR) is not well understood. We therefore explored the effect of insulin (300 nmol/kg per day for 12 days) on the intestine in sex-matched C57Bl/6J mice. The intestinal and metabolic profiles were also characterized in male and female intestinal-epithelial IR knockout (IE-irKO) mice compared with all genetic controls on a chow diet or Western diet (WD) for 4 to 12 weeks.
View Article and Find Full Text PDFIn addition to lowering of blood glucose, treatment with insulin also induces lipid synthesis and storage. Patients with type 2 diabetes often suffer from lipid-related comorbidities including dyslipidemia, obesity, and fatty liver disease. We examined here in two separate studies changes in lipid dynamics in Zucker diabetic fatty (ZDF) rats, in response to 7 days of treatment with either insulin or the insulin receptor agonist peptide S597.
View Article and Find Full Text PDFInsulin treatment is associated with increased adipose mass in both humans and mice. However, the underlying dynamic basis of insulin induced lipid accumulation in adipose tissue remains elusive. To assess this, young female C57BL6/J mice were fed a low fat diet for 3 weeks, treated subsequently with 7 days of constant subcutaneous insulin infusion by osmotic minipumps and compared to mice with only buffer infused.
View Article and Find Full Text PDFAims/hypothesis: Several studies have shown that adiponectin can lower blood glucose in diabetic mice. The aim of this study was to establish an effective adiponectin production process and to evaluate the anti-diabetic potential of the different adiponectin forms in diabetic mice and sand rats.
Methods: Human high molecular weight, mouse low molecular weight and mouse plus human globular adiponectin forms were expressed and purified from mammalian cells or yeast.
In type 2 Diabetes (T2D) free fatty acids (FFAs) in plasma are increased and hepatic insulin resistance is "selective", in the sense that the insulin-mediated decrease of glucose production is blunted while insulin's effect on stimulating lipogenesis is maintained. We investigated the molecular mechanisms underlying this pathogenic paradox. Primary rat hepatocytes were exposed to palmitate for twenty hours.
View Article and Find Full Text PDFThe relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%).
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood.
View Article and Find Full Text PDF5'-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported.
View Article and Find Full Text PDFComputational analysis of the ligand binding pocket of the three PPAR receptor subtypes was utilized in the design of potent PPARalpha agonists. Optimum PPARalpha potency and selectivity were obtained with substituents having van der Waals volume around 260. Compound 6 had a PPARalpha potency of 0.
View Article and Find Full Text PDFThe aim was to identify a novel selective PPARdelta agonist with full efficacy on free fatty acid (FFA) oxidation in vitro and plasma lipid correction in vivo. Using the triple PPARalpha,gamma,delta agonist 1 as the structural starting point, we wanted to investigate the possibility of obtaining selective PPARdelta agonists by modifying only the acidic part of 1, while holding the lipophilic half of the molecule constant. The structure-activity relationship was guided by in vitro transactivation data using the human PPAR receptors, FFA oxidation efficacy performed in the rat muscle L6 cell line, and in vivo rat pharmacokinetic properties.
View Article and Find Full Text PDFThe 5'AMP-activated protein kinase (AMPK) is a potential antidiabetic drug target. Here we show that the pharmacological activation of AMPK by 5-aminoimidazole-1-beta-4-carboxamide ribofuranoside (AICAR) leads to inactivation of glycogen synthase (GS) and phosphorylation of GS at Ser 7 (site 2). In muscle of mice with targeted deletion of the alpha2-AMPK gene, phosphorylation of GS site 2 was decreased under basal conditions and unchanged by AICAR treatment.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2002
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation.
View Article and Find Full Text PDFMetformin, a drug widely used to treat type 2 diabetes, was recently shown to activate the AMP-activated protein kinase (AMPK) in intact cells and in vivo. In this study we addressed the mechanism for this effect. In intact cells, metformin stimulated phosphorylation of the key regulatory site (Thr-172) on the catalytic (alpha) subunit of AMPK.
View Article and Find Full Text PDF