Chronic wounds are non-healing lesions characterized by a high degree of inflammation, posing significant challenges in clinical management due to the increased risk of severe infection. This study focuses on developing a powder for cutaneous application to enhance the healing and prevent infections in chronic wounds. The smart nanocomposites-based biomimetic microparticles here developed combine the properties of chitosan and of clays and represent a significant innovation in the field of biomaterials for skin regeneration since they possess enhanced antimicrobial properties, are multi-functional scaffolds and promote cell proliferation, support tissue reconstruction by mimicking the natural extracellular matrix, and provide hemostatic properties to control bleeding during wound closure.
View Article and Find Full Text PDFChronic wounds represent silent epidemic affecting a large portion of the world population, especially the elders; in this context, the development of advanced bioactive dressings is imperative to accelerate wound healing process, while contrasting or preventing infections. The aim of the present work was to provide a deep characterization of the functional and biopharmaceutical properties of a sustainable thin and flexible films, composed of whey proteins alone (WPI) and added with nanostructured zinc oxide (WPZ) and intended for the management of chronic wounds. The potential of whey proteins-based films as wound dressings has been confirmed by their wettability, hydration properties, elastic behavior upon hydration, biodegradation propensity and, when added with nanostructured zinc oxide, antibacterial efficacy against both Gram-positive and Gram-negative pathogens, i.
View Article and Find Full Text PDFVascular graft infections are a severe complication in vascular surgery, with a high morbidity and mortality. Prevention and treatment involve the use of antibiotic- or antiseptic-impregnated artificial vascular grafts, but currently, there are no commercially available infection-proof small-diameter vascular grafts (SDVGs). In this work we investigated the antimicrobic activity of two SDVGs prototypes loaded with tobramycin and produced via the electrospinning of drug-doped PLGA (polylactide-co-glycolide) solutions.
View Article and Find Full Text PDFPeriodontal regeneration is extremely limited and unpredictable due to structural complications, as it requires the simultaneous restoration of different tissues, including cementum, gingiva, bone, and periodontal ligament. In this work, spray-dried microparticles based on green materials (polysaccharides - gums - and a protein - silk fibroin) are proposed to be implanted in the periodontal pocket as 3D scaffolds during non-surgical treatments, to prevent the progression of periodontal disease and to promote the healing in mild periodontitis. Arabic or xanthan gum have been associated to silk fibroin, extracted from Bombyx mori cocoons, and loaded with lysozyme due to its antibacterial properties.
View Article and Find Full Text PDFTendon disorders are common medical conditions that could lead to significant disability, pain, healthcare costs, and a loss of productivity. Traditional approaches require long periods of treatment, and they largely fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. To overcome these limitations, innovative strategies for the treatment of these injuries need to be explored.
View Article and Find Full Text PDFPrussian Blue (PB) is an inexpensive, biocompatible, photothermally active material. In this paper, self-assembled monolayers of PB nanoparticles were grafted on a glass surface, protected with a thin layer of silica and decorated with spherical silver nanoparticles. This combination of a photothermally active nanomaterial, PB, and an intrinsically antibacterial one, silver, leads to a versatile coating that can be used for medical devices and implants.
View Article and Find Full Text PDFIn this paper, we report on the preparation of Imidazole-functionalized glass surfaces, demonstrating the ability of a dinuclear Cu(II) complex of a macrocyclic ligand to give a "cascade" interaction with the deprotonated forms of grafted imidazole moieties. In this way, we realized a prototypal example of an antimicrobial surface based on a supramolecular approach, obtaining a neat microbicidal effect using low amounts of the described copper complex.
View Article and Find Full Text PDFPeripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death.
View Article and Find Full Text PDFBacteria infections and related biofilms growth on surfaces of medical devices are a serious threat to human health. Controlled hyperthermia caused by photothermal effects can be used to kill bacteria and counteract biofilms formation. Embedding of plasmonic nano-objects like gold nanostars (GNS), able to give an intense photothermal effect when irradiated in the NIR, can be a smart way to functionalize a transparent and biocompatible material like polydimethylsiloxane (PDMS).
View Article and Find Full Text PDFPVA films with embedded either silver nanoparticles (AgNP), NIR-absorbing photothermal gold nanostars (GNS), or mixed AgNP+GNS were prepared in this research. The optimal conditions to obtain stable AgNP+GNS films with intact, long lasting photothermal GNS were obtained. These require coating of GNS with a thiolated polyethylene glycol (PEG) terminated with a carboxylic acid function, acting as reticulant in the film formation.
View Article and Find Full Text PDFL. is a tropical plant belonging to the Malvaceae family. In Kurdistan, the Autonomous Region of Iraq, water infusion of calyces is recommended for the treatment of hypotension and the common cold.
View Article and Find Full Text PDFChronic wounds account for 3% of total healthcare expenditure of developed countries; thus, innovative therapies, including Mesenchymal Stem Cells (MSCs) end their exosomes are increasingly considered, even if the activity depends on the whole secretome, made of both soluble proteins and extracellular vesicles. In this work, we prove for the first time the in vivo activity of the whole secretome formulated in a sponge-like alginate wound dressing to obtain the controlled release of bioactive substances. The product has been prepared in a public GMP-compliant facility by a scalable process; based on the murine model, treated wounds healed faster than controls without complications or infections.
View Article and Find Full Text PDFInfections in nonhealing wounds remain one of the major challenges. Recently, nanomedicine approach seems a valid option to overcome the antibiotic resistance mechanisms. The aim of this study was the development of three types of polysaccharide-based scaffolds (chitosan-based (CH), chitosan/chondroitin sulfate-based (CH/CS), chitosan/hyaluronic acid-based (CH/HA)), as dermal substitutes, to be loaded with norfloxacin, intended for the treatment of infected wounds.
View Article and Find Full Text PDFWe developed an easy and reproducible synthetic method to graft a monolayer of copper sulfide nanoparticles (CuS NP) on glass and exploited their particular antibacterial features. Samples were fully characterized showing a good stability, a neat photo-thermal effect when irradiated in the Near InfraRed (NIR) region (in the so called "biological window"), and the ability to release controlled quantities of copper in water. The desired antibacterial activity is thus based on two different mechanisms: (i) slow and sustained copper release from CuS NP-glass samples, (ii) local temperature increase caused by a photo-thermal effect under NIR laser irradiation of CuS NP-glass samples.
View Article and Find Full Text PDFLocal administration of vaginal probiotics, especially lactobacilli, has been recently proposed as an effective prevention strategy against candidosis recurrences, which affect 40-50% of women. In this context, the aim of the present work was the development of a mucoadhesive gelling formulation for the vaginal administration of . Mixtures of poloxamer 407 (P407) and methylcellulose (MC), two thermosensitive polymers, were prepared and subjected to rheological analyses for the assessment of their sol/gel transition temperature.
View Article and Find Full Text PDFThe adhesion and proliferation of bacteria on abiotic surfaces pose challenges in both health care and industrial applications. Gold nanostars (GNSs) monolayers grafted on glass have demonstrated to exert antibacterial action due to their photo-thermal features. Here, these GNS layers were further functionalized using thiols monolayers, in order to impart different wettability to the surfaces and thus adding a feature that could help to fight bacterial proliferation.
View Article and Find Full Text PDFAnti-infective surfaces are a modern strategy to address the issue of infection related to the clinical use of materials for implants and medical devices. Nanocoatings, with their high surface/mass ratio, lend themselves to being mono-layered on the material surfaces to release antibacterial molecules and prevent bacterial adhesion. Here, a "layer-by-layer" (LbL) approach to achieve a self-assembled monolayer (SAM) with high microbicidal effect on hydroxylated surfaces is presented, exploiting the reaction between a monolayer of thiolic functions on glass/quartz surfaces and a newly synthesized derivative of the well-known antibacterial compound silver sulfadiazine.
View Article and Find Full Text PDFAccumulating evidence shows that Mesenchymal Stem/Stromal Cells (MSCs) exert their therapeutic effects by the release of secretome, made of both soluble proteins and nano/microstructured extracellular vesicles (EVs). In this work, for the first time, we proved by a proteomic investigation that adipose-derived (AD)-MSC-secretome contains alpha-1-antitrypsin (AAT), the main elastase inhibitor in the lung, 72 other proteins involved in protease/antiprotease balance, and 46 proteins involved in the response to bacteria. By secretome fractionation, we proved that AAT is present both in the soluble fraction of secretome and aggregated and/or adsorbed on the surface of EVs, that can act as natural carriers promoting AAT in vivo stability and activity.
View Article and Find Full Text PDFCutaneous wounds represent a major issue in medical care, with approximately 300 million chronic and 100 million traumatic wound patients worldwide, and microbial infections slow the healing process. The aim of this work was to develop electrospun scaffolds loaded with silver nanoparticles (AgNPs) to enhance cutaneous healing, preventing wound infections. AgNPs were directly added to polymeric blends based on chitosan (CH) and pullulan (PUL) with hyaluronic acid (HA) or chondroitin sulfate (CS) to be electrospun obtaining nanofibrous scaffolds.
View Article and Find Full Text PDFThe advent and growth of resistance phenomena to antibiotics has reached critical levels, invalidating the action of a majority of antibiotic drugs currently used in the clinical field. Several innovative techniques, such as the nanotechnology, can be applied for creating innovative drug delivery systems designed to modify drug release itself and/or drug administration route; moreover, they have proved suitable for overcoming the phenomenon of antibiotic resistance. Electrospun nanofibers, due to their useful structural properties, are showing promising results as antibiotic release devices for preventing bacteria biofilm formation after surgical operation and for limiting resistance phenomena.
View Article and Find Full Text PDFThis work aims at designing a drug delivery system for rifampicin (RIF) to be used for the therapy of infections from mycobacterium tuberculosis or other lung-colonizing bacteria. We are proposing, in particular, the delivery of RIF by micelles based on inulin functionalized with vitamin E (INVITE). We previously demonstrated that INVITE micelles are formed from the self-assembling sustained by the interaction, within the hydrophobic core, of aromatic groups belonging to vitamin E.
View Article and Find Full Text PDFChronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.