Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor BaKFeAs to the hole-doping regime beyond KFeAs by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped BaKFeAs.
View Article and Find Full Text PDFWe present the magnetic properties of the chiral, polar, and possibly magnetoelectric antiperovskite β-FeSeO as derived from magnetization and specific-heat measurements as well as from powder neutron diffraction and Mössbauer experiments. Our macroscopic data unambiguously reveal two magnetic phase transitions at ≈ 103 K and ≈ 78 K, while Rietveld analysis of neutron powder diffraction data reveals a noncollinear antiferromagnetic structure featuring magnetic moments in the - plane of the trigonal structure and a ferromagnetic moment along . The latter is allowed by symmetry between and , weakly visible in the magnetization data yet unresolvable microscopically.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
The ability to efficiently control charge and spin in the cuprate high-temperature superconductors is crucial for fundamental research and underpins technological development. Here, we explore the tunability of magnetism, superconductivity, and crystal structure in the stripe phase of the cuprate La[Formula: see text]Ba[Formula: see text]CuO[Formula: see text], with [Formula: see text] = 0.115 and 0.
View Article and Find Full Text PDFWe report on measurements of the in-plane magnetic penetration depth (λ_{ab}) in single crystals of Sr_{2}RuO_{4} down to ≃0.015 K by means of muon-spin rotation-relaxation. The linear temperature dependence of λ_{ab}^{-2} for T≲0.
View Article and Find Full Text PDFMagnetic field penetrates type-II bulk superconductors by forming quantum vortices that enclose a magnetic flux equal to the magnetic flux quantum. The flux quantum is a universal quantity that depends only on fundamental constants. In this study, we investigated isolated vortices in the hole-overdoped BaKFeAs ( = 0.
View Article and Find Full Text PDFThe hexadecafluorophthalocyanine-iron complex FePcF was recently shown to convert olefins into ketones in the presence of stoichiometric amounts of triethylsilane in ethanol at room temperature under an oxygen atmosphere. Herein, we describe an extensive mechanistic investigation for the conversion of 2-vinylnaphthalene into 2-acetylnaphthalene as model reaction. A variety of studies including deuterium- and O -labeling experiments, ESI-MS, and Fe Mössbauer spectroscopy were performed to identify the intermediates involved in the catalytic cycle of the oxidation process.
View Article and Find Full Text PDFThere is considerable evidence that the superconducting state of SrRuO breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking, its onset temperature, T, is generally found to match the critical temperature, T, within resolution. In combination with evidence for even parity, this result has led to consideration of a d ± id order parameter.
View Article and Find Full Text PDFWe present a piezoelectric-driven uniaxial pressure cell that is optimized for muon spin relaxation and neutron scattering experiments and that is operable over a wide temperature range including cryogenic temperatures. To accommodate the large samples required for these measurement techniques, the cell is designed to generate forces up to ∼1000 N. To minimize the background signal, the space around the sample is kept as open as possible.
View Article and Find Full Text PDFWe report muon spin rotation and magnetic susceptibility experiments on in-plane stress effects on the static spin-stripe order and superconductivity in the cuprate system La_{2-x}Ba_{x}CuO_{4} with x=0.115. An extremely low uniaxial stress of ∼0.
View Article and Find Full Text PDFWe report muon spin rotation and magnetization measurements under pressure on Fe_{1+δ}Se_{1-x}S_{x} with x≈0.11. Above p≈0.
View Article and Find Full Text PDFThe present work introduces a facile synthetic route for efficient doping of [Ni(bpy) ] into silica nanoparticles with various sizes and architectures. Variation of the latter results in different concentrations of the Ni complexes at the interface of the composite nanoparticles. The UV-Vis analysis of the nanoparticles reveals changes in the inner-sphere environment of the Ni complexes when embedded into the nanoparticles, while the inner-sphere of Ni is invariant for the nanoparticles with different architecture.
View Article and Find Full Text PDFConductive biomolecular systems are investigated for their promise of new technologies. One biomolecular material that has garnered interest for device applications is eumelanin. Its unusual properties have led to its incorporation in a wide set of platforms including transistor devices and batteries.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Topological materials ranging from topological insulators to Weyl and Dirac semimetals form one of the most exciting current fields in condensed-matter research. Many half-Heusler compounds, RPtBi (R = rare earth), have been theoretically predicted to be topological semimetals. Among various topological attributes envisaged in RPtBi, topological surface states, chiral anomaly, and planar Hall effect have been observed experimentally.
View Article and Find Full Text PDFThe efficient catalysis of oxidative alkylation and fluoroalkylation of aromatic C-H bonds is of paramount importance in the pharmaceutical and agrochemical industries, and requires the development of convenient Ag0-based nano-architectures with high catalytic activity and recyclability. We prepared Ag-doped silica nanoparticles (Ag0/+@SiO2) with a specific nano-architecture, where ultra-small sized silver cores are immersed in silica spheres, 40 nm in size. The nano-architecture provides an efficient electrochemical oxidation of Ag+@SiO2 without any external oxidant.
View Article and Find Full Text PDFEmploying optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm up to 7000 cm in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm and mainly determine the terahertz absorption.
View Article and Find Full Text PDFThe compound SrCeFBiS belongs to the intensively studied family of layered BiS superconductors. It attracts special attention because superconductivity at T = 2.8 K was found to coexist with local-moment ferromagnetic order with a Curie temperature T = 7.
View Article and Find Full Text PDFThe electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ (ν) whose magnitude exponentially decreases while cooling.
View Article and Find Full Text PDFA quantum critical point (QCP) is currently being conjectured for the BaFe(As P ) system at the critical value x ≈ 0.3. In the proximity of a QCP, all thermodynamic and transport properties are expected to scale with a single characteristic energy, given by the quantum fluctuations.
View Article and Find Full Text PDFThe Hall effect is a powerful tool for investigating carrier type and density. For single-band materials, the Hall coefficient is traditionally expressed simply by , where e is the charge of the carrier, and n is the concentration. However, it is well known that in the critical region near a quantum phase transition, as it was demonstrated for cuprates and heavy fermions, the Hall coefficient exhibits strong temperature and doping dependencies, which can not be described by such a simple expression, and the interpretation of the Hall coefficient for Fe-based superconductors is also problematic.
View Article and Find Full Text PDFIn general, the critical current density, Jc, of type II superconductors and its anisotropy with respect to magnetic field orientation is determined by intrinsic and extrinsic properties. The Fe-based superconductors of the '122' family with their moderate electronic anisotropies and high yet accessible critical fields (Hc2 and Hirr) are a good model system to study this interplay. In this paper, we explore the vortex matter of optimally Co-doped BaFe2As2 thin films with extended planar and c-axis correlated defects.
View Article and Find Full Text PDFA new iron-catalyzed reaction for the coupling of perfluoroalkyl iodides (RFI) with aromatic substrates is described. The perfluoroalkylated arene products are obtained in good to excellent yields in the presence of a [(bpy)Fe(ii)] catalyst (10%) electrochemically regenerated or generated from [(bpy)Fe(iii)] at room temperature. The development, scope, and preliminary mechanistic studies of these transformations are reported.
View Article and Find Full Text PDFThe discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping.
View Article and Find Full Text PDFThe recently discovered oxypnictide superconductor SmFeAs(O,F) is the most attractive material among the Fe-based superconductors due to its highest transition temperature of 56 K and potential for high-field performance. In order to exploit this new material for superconducting applications, the knowledge and understanding of its electro-magnetic properties are needed. Recent success in fabricating epitaxial SmFeAs(O,F) thin films opens a great opportunity to explore their transport properties.
View Article and Find Full Text PDFVestn Khir Im I I Grek
February 2002
The vast material concerned with the surgical treatment of patients with external abdominal hernias collected for 10 years includes 913 planned operations and 608 emergency operations for incarcerated hernias. The overall lethality was 3.4%, lethality after planned operations being 0.
View Article and Find Full Text PDF