Publications by authors named "Grindley J"

Liver steatosis is an increasing health issue with few therapeutic options, partly because of a paucity of experimental models. In humanized liver rodent models, abnormal lipid accumulation in transplanted human hepatocytes occurs spontaneously. Here, we demonstrate that this abnormality is associated with compromised interleukin-6 (IL-6)-glycoprotein 130 (GP130) signaling in human hepatocytes because of incompatibility between host rodent IL-6 and human IL-6 receptor (IL-6R) on donor hepatocytes.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disorder driven by unrelenting extracellular matrix deposition. Fibroblasts are recognized as the central mediators of extracellular matrix production in IPF; however, the characteristics of the underlying fibroblast cell populations in IPF remain poorly understood. Here, we use an unbiased single-cell RNA sequencing analysis of a bleomycin-induced pulmonary fibrosis model to characterize molecular responses to fibrotic injury.

View Article and Find Full Text PDF

Surgical intervention on cetaceans is rarely performed due to challenges including general anesthesia and post-operative wound healing. This report describes the evaluation and treatment of an adult female bottlenose dolphin (Tursiops truncatus) with the US Navy Marine Mammal Program, with a chronic ventral cervical abscess caused by Candida glabrata. Despite aspiration and lavage along with multiple antifungal drugs, the patient developed inspiratory stridor with decreased performance level and surgical treatment was pursued.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome. The more clinically concerning form of the disease, nonalcoholic steatohepatitis (NASH), is characterized by steatosis, lobular inflammation, and ballooning degeneration. Here we describe a naturally occurring syndrome in the common marmoset that recapitulates the pathologic findings associated with NAFLD/NASH in humans.

View Article and Find Full Text PDF

Although self-renewal is the central property of stem cells, the underlying mechanism remains inadequately defined. Using a hematopoietic stem and progenitor cell (HSPC)-specific conditional induction line, we generated a compound genetic model bearing both Pten deletion and β-catenin activation. These double mutant mice exhibit a novel phenotype, including expansion of phenotypic long-term hematopoietic stem cells (LT-HSCs) without extensive differentiation.

View Article and Find Full Text PDF

The hypothesis that cancer is driven by tumour-initiating cells (popularly known as cancer stem cells) has recently attracted a great deal of attention, owing to the promise of a novel cellular target for the treatment of haematopoietic and solid malignancies. Furthermore, it seems that tumour-initiating cells might be resistant to many conventional cancer therapies, which might explain the limitations of these agents in curing human malignancies. Although much work is still needed to identify and characterize tumour-initiating cells, efforts are now being directed towards identifying therapeutic strategies that could target these cells.

View Article and Find Full Text PDF

Haematopoietic stem cell (HSC) niches, although proposed decades ago, have only recently been identified as separate osteoblastic and vascular microenvironments. Their interrelationships and interactions with HSCs in vivo remain largely unknown. Here we report the use of a newly developed ex vivo real-time imaging technology and immunoassaying to trace the homing of purified green-fluorescent-protein-expressing (GFP(+)) HSCs.

View Article and Find Full Text PDF

Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice.

View Article and Find Full Text PDF

Intestinal polyposis, a precancerous neoplasia, results primarily from an abnormal increase in the number of crypts, which contain intestinal stem cells (ISCs). In mice, widespread deletion of the tumor suppressor Phosphatase and tensin homolog (PTEN) generates hamartomatous intestinal polyps with epithelial and stromal involvement. Using this model, we have established the relationship between stem cells and polyp and tumor formation.

View Article and Find Full Text PDF

Haematopoietic stem cells (HSCs) must achieve a balance between quiescence and activation that fulfils immediate demands for haematopoiesis without compromising long-term stem cell maintenance, yet little is known about the molecular events governing this balance. Phosphatase and tensin homologue (PTEN) functions as a negative regulator of the phosphatidylinositol-3-OH kinase (PI(3)K)-Akt pathway, which has crucial roles in cell proliferation, survival, differentiation and migration. Here we show that inactivation of PTEN in bone marrow HSCs causes their short-term expansion, but long-term decline, primarily owing to an enhanced level of HSC activation.

View Article and Find Full Text PDF

Nfatc1 is an endocardial transcription factor required for development of cardiac valves. Herein, we describe identification and characterization of a tissue-specific enhancer in the first intron of murine Nfatc1 that activates a heterogenic promoter and directs gene expression in a subpopulation of endocardial cells of the developing heart: the pro-valve endocardial cells. This enhancer activity begins on embryonic day (E) 8.

View Article and Find Full Text PDF

Fibroblast growth factor 10 (FGF10) is a mesenchymal paracrine-acting factor that plays a key role in the organogenesis of the prostate, and Fgf10 transcripts exhibit a highly restricted expression pattern within prostatic mesenchyme. To study the regulation of Fgf10 we have used organ rudiments grown in vitro as well as a primary stromal cell system derived from the ventral mesenchymal pad (VMP), a condensed area of mesenchyme known to induce prostatic organogenesis. Characterization of VMP cells (VMPCs) showed that they retained expression of AR as well as transcripts for FGF10 and TGFbeta1, -2, and -3.

View Article and Find Full Text PDF

Pax6, an evolutionarily conserved transcription factor, is expressed in the murine and zebrafish embryonic pituitary, but its role in pituitary development and endocrine function has not been described. To study the role of Pax6 in vivo, we examined Pax6 mutant mouse (SeyNeu) pituitaries. Mice homozygous for the SeyNeu mutation die at birth; therefore, we examined peptide hormone expression by the differentiated pituitary cell types as well as developmental marker expression in the intermediate and anterior lobes of the embryonic pituitary.

View Article and Find Full Text PDF

Cloning and sequencing of mouse Mf2 (mesoderm/mesenchyme forkhead 2) cDNAs revealed an open reading frame encoding a putative protein of 492 amino acids which, after in vitro translation, binds to a DNA consensus sequence. Mf2 is expressed at high levels in the ventral region of newly formed somites, in sclerotomal derivatives, in lateral plate and cephalic mesoderm and in the first and second branchial arches. Other regions of mesodermal expression include the developing tongue, meninges, nose, whiskers, kidney, genital tubercule and limb joints.

View Article and Find Full Text PDF

During mouse lung morphogenesis, the distal mesenchyme regulates the growth and branching of adjacent endoderm. We report here that fibroblast growth factor 10 (Fgf10) is expressed dynamically in the mesenchyme adjacent to the distal buds from the earliest stages of lung development. The temporal and spatial pattern of gene expression suggests that Fgf10 plays a role in directional outgrowth and possibly induction of epithelial buds, and that positive and negative regulators of Fgf10 are produced by the endoderm.

View Article and Find Full Text PDF

Murine Gli, Gli2, and Gli3 are zinc finger genes related to Drosophila cubitus interuptus, a component of the hedgehog signal transduction pathway. In the embryonic lung, all three Gli genes are strongly expressed at the pseudoglandular stage, in distinct but overlapping domains of the mesoderm. Expression of Gli and Gli3, but not of Gli2, is subsequently downregulated at the canalicular stage, coincident with a decline in the expression of sonic hedgehog (Shh) and the hedgehog receptor gene, patched (Ptc).

View Article and Find Full Text PDF

Pax6 expression in the diencephalon of the mouse embryo is restricted both antero-posteriorly and dorso-ventrally, with changes in level occurring at prosomere boundaries. Small eye (Pax6Sey-1Neu) mice homozygous for Pax6 mutations have multiple defects in early forebrain development. In the diencephalon of Pax6Sey-1Neu/Pax6Sey-1Neu mice there is an apparent enlargement of the zona limitans (the boundary region between prosomeres p2 and p3), and a blurring of the p1-p2 boundary.

View Article and Find Full Text PDF

Small eye (Sey) mice homozygous for mutations in the Pax-6 gene have no lenses and no nasal cavities. We have examined the ontogeny of eye and nasal defects in Sey/Sey embryos and have related the defects seen to the pattern of Pax-6 mRNA expression in the mouse during normal eye and nasal development. There are two principal components of the early eye, the neural ectoderm of the optic vesicle, which forms the retina, and the overlying surface ectoderm, which forms the lens and cornea.

View Article and Find Full Text PDF

A gene for 2,5-diketo-d-gluconate (25DKG) reductase, which encodes an enzyme composed of 277 amino acid residues catalyzing the reduction of 25DKG to 2-keto-l-gulonate (2KLG), was cloned from Corynebacterium sp. strain SHS752001 and expressed in Erwinia citreus SHS2003, a strain which oxidizes glucose to 25DKG. The recombinant microorganism converted glucose to 2KLG, a compound which can be readily converted to l-ascorbate (vitamin C).

View Article and Find Full Text PDF

The sequence of the DNA of the origin region of NTP1 has been obtained. Analysis of the sequence indicates that: (1) there is great sequence homology in the DNA upstream from the origin in NTP1, ColE1, CLODF13, PBR345 AND PBR322; (2) only seven base pairs of NTP1 are identical with the sequence downstream from the origin in ColE1, although some homology exists for 140 bases downstream; (3) two ten base pair direct repeats are present in NTP1 which are also conserved in all four plasmids named above; (4) probably no polypeptide greater than fifteen amino acids in length is encoded by the NTP1 origin region, since no single open reading frame is conserved in all five plasmids.

View Article and Find Full Text PDF

As professional practitioners, nurses can promote prevention by becoming knowledgeable about all aspects of the phenomenon of child abuse, by carefully scrutinizing their own beliefs and values, and by monitoring their own behavior. By careful use of the problem-solving approach in their practices they can effectively intervene in potentially problematic situations. As citizens who have more complete and accurate information than their lay counterparts, they can be vital resources.

View Article and Find Full Text PDF

By restriction endonuclease cleavage mapping and electron microscopic examination of heteroduplexes, we have identified an ampicillin resistance determinant transposon, designated Tn1701, in a group of small, nontransferring plasmids which confer resistance to ampicillin (Ap), sulfonamide (Su), and streptomycin (Sm). Plasmid NTP1, which mediates Ap resistance, contains Tn1701. Recombinant plasmids NTP3 (Ap Su) and NTP4 (Ap Su Sm) contain Tn1701, indicating that they were derived by transposition of Tn1701 from NTP1 to an unrelated plasmid, NTP2 (Su Sm).

View Article and Find Full Text PDF