Phylogenetic trees establish a historical context for the study of organismal form and function. Most phylogenetic trees are estimated using a model of evolution. For molecular data, modeling evolution is often based on biochemical observations about changes between character states.
View Article and Find Full Text PDF3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations.
View Article and Find Full Text PDFThe development of near-infrared light responsive conductive polymers provides a useful theranostic platform for malignant tumors by maximizing spatial resolution with deep tissue penetration for diagnosis and photothermal therapy. Herein, the self-assembly of ultrathin 2D polypyrrole nanosheets utilizing dopamine as a capping agent and a monolayer of octadecylamine as a template is demonstrated. The 2D polypyrrole-polydopamine nanostructure has tunable size distribution which shows strong absorption in the first and second near-infrared windows, enabling photoacoustic imaging and photothermal therapy.
View Article and Find Full Text PDFQuantitative analytical gas sampling is of great importance in a range of environmental, safety, and scientific applications. In this article, we present the design, operation, and performance of a recently developed tabletop terahertz (THz) spectroscopic molecular sensor capable of rapid (minutes) and sensitive detection of polar gaseous analytes with near "absolute" specificity. A novel double-coil absorption cell design and an array of room-temperature sorbent-based preconcentration modules facilitate quantitative THz detection of light polar volatile compounds, which often challenge the capabilities of established gas sensing techniques.
View Article and Find Full Text PDFThe Arctic Warbler () is a cryptically plumed songbird with an uncommon Nearctic-Paleotropical migratory strategy. Using light-level geolocators, we provide the first documentation of the migratory routes and wintering locations of two territorial adult male Arctic Warblers from Denali National Park and Preserve, Alaska. After accounting for position estimation uncertainties and biases, we found that both individuals departed their breeding grounds in early September, stopped over in southeastern Russia and China during autumn migration, then wintered in the Philippines and the island of Palau.
View Article and Find Full Text PDFNon-viral vectors represent versatile and immunologically safer alternatives for nucleic acid delivery. Nanoneedles and high-aspect ratio nanostructures are unconventional but interesting delivery systems, in which delivery is mediated by surface interactions. Herein, nanoneedles are synergistically combined with polysaccharide-polyplex nanofilms and enhanced transfection efficiency is observed, compared to polyplexes in suspension.
View Article and Find Full Text PDFIncreasing evidence suggests that ultra-processed foods (UPFs) lead to elevated risk of obesity-related conditions, but UPF measurement has been criticized for its subjectivity and lack of clarity on biological mechanism. Sensory-related industrial additives (SRIAs) are a defining feature of UPFs and may encourage overconsumption by enhancing the sensory quality of foods. However, practical challenges have prevented systematic incorporation of SRIAs into UPF measurement.
View Article and Find Full Text PDFHuman health and performance monitoring (HHPM) is imperative to provide information necessary for protecting, sustaining, evaluating, and improving personnel in various occupational sectors, such as industry, academy, sports, recreation, and military. While various commercially wearable sensors are on the market with their capability of "quantitative assessments" on human health, physical, and psychological states, their sensing is mostly based on physical traits, and thus lacks precision in HHPM. Minimally or noninvasive biomarkers detectable from the human body, such as body fluid (e.
View Article and Find Full Text PDFThis focus issue on the United States Air Force Research Laboratory (AFRL) spans the latest trends in imaging and detectors, atmospheric characterization, laser sources and propagation, optics and optical assemblies, optical characterization of materials, photonics, optical processing, and machine learning for applications that cover everything from stellar interferometry to studying damage to the plasma membranes of living cells.
View Article and Find Full Text PDFFront Med (Lausanne)
September 2021
In response to the COVID-19 pandemic, immediate and scalable testing solutions are needed to direct return to full capacity planning in the general public and across the Department of Defense (DoD). To fully understand the extent to which a population has been affected by COVID-19, active monitoring approaches require an estimation of overall seroprevalence in addition to accurate, affordable, and rapid tests to detect current SARS-CoV-2 infection. In this study, researchers in the Air Force Research Laboratory's 711th Human Performance Wing, Airman Systems Directorate evaluated the performance of various testing methods for the detection of SARS-CoV-2 antibodies and viral RNA in asymptomatic adults working at Wright-Patterson Air Force Base and the surrounding area during the period of 23 July 2020-23 Oct 2020.
View Article and Find Full Text PDFNonviral direct neuronal reprogramming holds significant potential in the fields of tissue engineering and regenerative medicine. However, the issue of low reprogramming efficiency poses a major barrier to its application. We propose that topographical cues, which have been applied successfully to enhance lineage-directed differentiation and multipotent stem cell transdifferentiation, could improve nonviral direct neuronal reprogramming efficiency.
View Article and Find Full Text PDFThe unique electrochemical properties of the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) make it an attractive material for use in neural tissue engineering applications. However, inadequate mechanical properties, and difficulties in processing and lack of biodegradability have hindered progress in this field. Here, the functionality of PEDOT:PSS for neural tissue engineering is improved by incorporating 3,4-ethylenedioxythiophene (EDOT) oligomers, synthesized using a novel end-capping strategy, into block co-polymers.
View Article and Find Full Text PDFSARS-CoV-2 has highlighted the requirement for a drastic change in pandemic response. While cases continue to rise, there is an urgent need to deploy sensitive and rapid testing in order to identify potential outbreaks before there is an opportunity for further community spread. Currently, reverse transcription quantitative polymerase chain reaction (RT-qPCR) is considered the gold standard for diagnosing an active infection, using a nasopharyngeal swab; however, it can take days after symptoms develop to properly identify and trace the infection.
View Article and Find Full Text PDFThe recently discovered CRISPR-Cas gene editing system and its derivatives have found numerous applications in fundamental biology research and pharmaceutical sciences. The need for precise external control over the gene editing and regulatory events has driven the development of inducible CRISPR-Cas systems. While most of the light-controllable CRISPR-Cas systems are based on protein engineering, we developed an alternative synthetic approach based on modification of crRNA/tracrRNA duplex (guide RNA or gRNA) with photocaging groups, preventing the gRNA from recognizing its genome target sequence until its deprotection is induced within seconds of illumination.
View Article and Find Full Text PDFLiver X receptors (LXRs) and their ligands are potent regulators of midbrain dopaminergic (mDA) neurogenesis and differentiation. However, the molecular mechanisms by which LXRs control these functions remain to be elucidated. Here, we perform a combined transcriptome and chromatin immunoprecipitation sequencing (ChIP-seq) analysis of midbrain cells after LXR activation, followed by bioinformatic analysis to elucidate the transcriptional networks controlling mDA neurogenesis.
View Article and Find Full Text PDFSelf-amplifying RNA (saRNA) vaccines are highly advantageous, as they result in enhanced protein expression compared to mRNA (mRNA), thus minimizing the required dose. However, previous delivery strategies were optimized for siRNA or mRNA and do not necessarily deliver saRNA efficiently due to structural differences of these RNAs, thus motivating the development of saRNA delivery platforms. Here, we engineer a bioreducible, linear, cationic polymer called "pABOL" for saRNA delivery and show that increasing its molecular weight enhances delivery both and .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Skeletal muscle cells contain hundreds of myonuclei within a shared cytoplasm, presenting unique challenges for regulating gene expression. Certain transcriptional programs (e.g.
View Article and Find Full Text PDFPhysiological sensors in a wearable form have rapidly emerged on the market due to technological breakthroughs and have become nearly ubiquitous with the Apple Watch, FitBit, and other wearable devices. While these wearables mostly monitor simple biometric signatures, new devices that can report on the human readiness level through sensing molecular biomarkers are critical to optimizing the human factor in both commercial sectors and the Department of Defense. The military is particularly interested in real-time, wearable, minimally invasive monitoring of fatigue and human performance to improve the readiness and performance of the war fighter.
View Article and Find Full Text PDFBreathing-air quality within commercial airline cabins has come under increased scrutiny because of the identification of volatile organic compounds (VOCs) from the engine bleed air used to provide oxygen to cabins. Ideally, a sensor would be placed within the bleed air pipe itself, enabling detection before it permeated through and contaminated the entire cabin. Current gas-phase sensors suffer from issues with selectivity, do not have the appropriate form factor, or are too complex for commercial deployment.
View Article and Find Full Text PDFThis paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin-mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well-defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range.
View Article and Find Full Text PDFHypoxia-like incidents in-flight have increased over the past decade causing severe safety concerns across the aviation community. As a result, the need to monitor flight crews in real-time for the onset of hypoxic conditions is paramount for continued aeronautical safety. Here, hypoxic events were simulated in the laboratory via a reduced oxygen-breathing device to determine the effect of recovery gas oxygen concentration (21% and 100%) on exhaled breath volatile organic compound composition.
View Article and Find Full Text PDFIn this work, we developed an assay to determine if an arbitrary white powder is a controlled substance, given the plasmonic response of aptamer-gold nanoparticle conjugates (Apt-AuNPs). Toward this end, we designed Apt-AuNPs with specific a response to common controlled substances without cross reactivity to chemicals typically used as fillers in street formulations. Plasmonic sensor variation was shown to produce unique data fingerprints for each chemical analyzed, supporting the application of multivariate statistical techniques to annotate unknown samples by chemical similarity.
View Article and Find Full Text PDF