Recently, the enhanced interest in water-soluble aminohydroximate Ln(III)-Cu(II) metallacrowns (MC) is largely due to their fascinating structural chemistry, diverse properties and ease of synthesis. We examined the water-soluble praseodymium(III) alaninehydroximate complex Pr(HO)[15-MC-5]·3Cl () as a highly effective chiral lanthanide shift reagent for NMR analysis of the biologically relevant (R/S)-mandelate (MA) anions in aqueous media. The R-MA and S-MA enantiomers can be easily discriminated in the presence of small (1.
View Article and Find Full Text PDFRecently there has been a great deal of interest and associated research into aspects of the coordination chemistry of lanthanides and bismuth-elements that show intriguing common features. This work focuses on the synthesis and characterization of a novel bismuth(III) polynuclear metallamacrocyclic complex derived from aminohydroxamic acid, in order to compare the coordination ability of Bi with the similarly sized La ions. A polynuclear tyrosinehydroximate Bi(OH)[15-MC-5](NO) () was obtained according to the synthetic routes previously described for water-soluble Ln(III)-Cu(II) 15-MC-5 metallacrowns.
View Article and Find Full Text PDFRecently, aminohydroximate ligands have found wide applications in the fascinating class of polynuclear metallamacrocyclic compounds named 15-MC-5 metallacrowns. The enhanced interest in water-soluble aminohydroximate Ln(iii)-Cu(ii) complexes is largely due to their rich coordination chemistry, diverse properties and ease of synthesis. We examined glycinehydroxamic acid as a simple ligand for the preparation of the first water-soluble polynuclear metallamacrocyclic Sr(ii)-Cu(ii) compound.
View Article and Find Full Text PDF