Bioorg Chem
December 2022
This study reports the design and synthesis of novel dialkyl (4-amino-5H-chromeno[2,3-d]pyrimidin-5-yl)phosphonates as potential antitumor agents against A549 (lung cancer), DU-145 (prostate cancer), PC-3 (prostate cancer), HeLa (cervical cancer) and MCF-7 (breast cancer), cell lines evidenced from the in vitro antitumor studies performed by MTT assay (across 10-30 μM concentrations). The structural eminence of these synthesized molecules has emanated by designing the structural core by uniting the chromene, pyrimidine and phosphonate moieties into one, which has augmented their novelty and made them unreported. Further the deep structural activity relationship study investigations articulated that the title compounds are promising drug-like compounds and potential inhibitor of histidine amino acid residue present on the respective enzymatic proteins [3QJZ (A549), 3VHE (DU-145), 3V49 (PC-3), 3F81 (HeLa), & 3R7Q (MCF-7)] of the cell lines screened and are identified as responsible for the multi-faceted antitumor activities predicted in vitro.
View Article and Find Full Text PDFA series of 3-amino-2-hydroxybenzofused 2-phosphalactones () has been synthesized from the Kabachnik-Fields reaction a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified , , and substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones.
View Article and Find Full Text PDFA new series of urea/thiourea derivatives have been efficiently synthesized from the reaction of L-3-hydroxytyrosine with selective isocyanates/isothiocyanates and characterized by Infra-red, proton & carbon-13 nuclear magnetic resonance spectral and mass spectrometry studies. All the synthesized compounds have been screened for their antioxidant activity by 1,1-diphenyl1-2-picrylhydrazyl radical assay, ferric reducing antioxidant power assay and also studied their molecular docking interaction profiles against 1N8Q and 3NRZ enzymatic proteins. The in vitro antioxidant activity has further supported by quantitative structure activity relationship, absorption, distribution, metabolism, and excretion & toxicity studies, bioactivity studies & enzyme inhibition assay and identified that they were potentially bound to ASP490 & ASP361 aminoacid residue in chain A of 1N8Q protein and GLN1194 aminoacid residue in chain L of 3NRZ protein and are responsible for potential antioxidant activity.
View Article and Find Full Text PDFA series of novel α-furfuryl-2-alkylaminophosphonates have been efficiently synthesized from the one-pot three-component classical Kabachnik-Fields reaction in a green chemical approach by addition of an generated dialkylphosphite to Schiff's base of aldehydes and amines by using environmental and eco-friendly silica gel supported iodine as a catalyst by microwave irradiation. The advantage of this protocol is simplicity in experimental procedures and products were resulted in high isolated yields. The synthesized α-furfuryl-2-alkylaminophosphonates were screened to antioxidant and plant growth regulatory activities and some are found to be potent with antioxidant and plant growth regulatory activities.
View Article and Find Full Text PDFSci Rep
November 2020
Acridone based synthetic and natural products with inherent anticancer activity advancing the research and generating a large number of structurally diversified compounds. In this sequence we have designed, synthesized a series of tetracyclic acridones with amide framework viz., 3-(alkyloyl/ aryloyl/ heteroaryloyl/ heteroaryl)-2,3-dihydropyrazino[3,2,1-de]acridin-7(1H)-ones and screened for their in vitro anti-cancer activity.
View Article and Find Full Text PDF