Publications by authors named "Grigory V Gladkov"

The search for active cellulolytic consortia among soil microorganisms is of significant applied interest, but the dynamics of the formation of such communities remain insufficiently studied. To gain insight into the formation of an active cellulolytic community, the experiment was designed to examine the colonization of a sterile substrate (cellulose) by microorganisms from two soil types: sod-podzolic and chernozem. To achieve this, the substrate was placed in the soil and incubated for six months.

View Article and Find Full Text PDF

Cryoconites are the deposits on the surface of glaciers that create specific ecological niches for the development of microorganism communities. The sediment material can vary in origin, structure, and nutrient content, creating local variations in the growth conditions. An additional factor of variability is the location of the glaciers, as they are found in different climatic zones in the high mountain regions and closer to the poles.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how microorganisms decompose oat straw in soil over six months, highlighting changes in microbial communities during this process.
  • During straw decomposition, three distinct phases of microbial activity and diversity were observed: an active early phase, a low-activity middle phase, and a high-diversity late phase.
  • Key findings include the identification of major bacterial and fungal groups that play a role in cellulose degradation, with significant genetic evidence of their capability to break down organic materials.
View Article and Find Full Text PDF

Restoration of anthropogenically disturbed soils is an urgent problem in modern ecology and soil biology. Restoration processes in northern environments are especially important, due to the small amounts of fertile land and low levels of natural succession. We analyzed the soil microbiota, which is one of the indicators of the succession process is the soil.

View Article and Find Full Text PDF

Drought and heavy metals seriously affect plant growth and the biodiversity of the associated rhizosphere microbiomes, which, in turn, could be involved in the adaptation of plants to these environmental stresses. Rhizosphere soil was collected from a three-factor pot experiment, where pea line SGE and its Cd-tolerant mutant SGECd were cultivated under both optimal and limited water conditions and treated with a toxic Cd concentration. The taxonomic structure of the prokaryotic rhizosphere microbiome was analyzed with the high-throughput sequencing of 16S rRNA amplicon libraries.

View Article and Find Full Text PDF

Recycling plant matter is one of the challenges facing humanity today and depends on efficient lignocellulose degradation. Although many bacterial strains from natural substrates demonstrate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using microbial consortia can be a solution to rapid and effective decomposition of plant biomass.

View Article and Find Full Text PDF

Rendzic Leptosols are intrazonal soils formed on limestone bedrock. The specialty of these soils is that parent rock material is more influential in shaping soil characteristics than zonal factors such as climate, especially during soil formation. Unlike fast evolving Podzols due to their leaching regime, Leptosols do not undergo rapid development due to the nature of the limestone.

View Article and Find Full Text PDF

High-throughput 16S rRNA sequencing was performed to compare the microbiomes inhabiting two contrasting soil types-sod-podzolic soil and chernozem-and the corresponding culturome communities of potentially cellulolytic bacteria cultured on standard Hutchinson media. For each soil type, soil-specific microorganisms have been identified: for sod-podzolic soil-Acidothermus, Devosia, Phenylobacterium and Tumebacillus, and for chernozem soil-Sphingomonas, Bacillus and Blastococcus. The dynamics of differences between soil types for bulk soil samples and culturomes varied depending on the taxonomic level of the corresponding phylotypes.

View Article and Find Full Text PDF