Understanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships.
View Article and Find Full Text PDFThe synthesis and control of properties of p-type ZnO is crucial for a variety of optoelectronic and spintronic applications; however, it remains challenging due to the control of intrinsic midgap (defect) states. In this study, we demonstrate a synthetic route to yield colloidal ZnO quantum dots (QD) via an enhanced sol-gel process that effectively eliminates the residual intermediate reaction molecules, which would otherwise weaken the excitonic emission. This process supports the creation of ZnO with p-type properties or compensation of inherited n-type defects, primarily due to zinc vacancies under oxygen-rich conditions.
View Article and Find Full Text PDFTitanium-based metal-organic framework, NH-MIL-125(Ti), has been widely investigated for photocatalytic applications but has low activity in the hydrogen evolution reaction (HER). In this work, we show a one-step low-cost postmodification of NH-MIL-125(Ti) via impregnation of Co(NO). The resulting Co@NH-MIL-125(Ti) with embedded single-site Co species, confirmed by XPS and XAS measurements, shows enhanced activity under visible light exposure.
View Article and Find Full Text PDFTransition metal reactivity toward carbon-hydrogen (C-H) bonds hinges on the interplay of electron donation and withdrawal at the metal center. Manipulating this reactivity in a controlled way is difficult because the hypothesized metal-alkane charge-transfer interactions are challenging to access experimentally. Using time-resolved x-ray spectroscopy, we track the charge-transfer interactions during C-H activation of octane by a cyclopentadienyl rhodium carbonyl complex.
View Article and Find Full Text PDFA comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature.
View Article and Find Full Text PDFCu diimine complexes present a noble metal free alternative to classical Ru, Re, Ir and Pt based photosensitizers in solution photochemistry, photoelectrochemical or dye-sensitized solar cells. Optimization of these dyes requires understanding of factors governing the key photochemical properties: excited state lifetime and emission quantum yield. The involvement of exciplex formation in the deactivation of the photoexcited state is a key question.
View Article and Find Full Text PDFThe commercial success of the electrochemical energy conversion technologies required for the decarbonization of the energy sector requires the replacement of the noble metal-based electrocatalysts currently used in (co-)electrolyzers and fuel cells with inexpensive, platinum-group metal-free analogs. Among these, Fe/N/C-type catalysts display promising performances for the reduction of O or CO , but their insufficient activity and stability jeopardize their implementation in such devices. To circumvent these issues, a better understanding of the local geometric and electronic structure of their catalytic active sites under reaction conditions is needed.
View Article and Find Full Text PDFOLED technology beyond small or expensive devices requires light-emitters, luminophores, based on earth-abundant elements. Understanding and experimental verification of charge transfer in luminophores are needed for this development. An organometallic multicore Cu complex comprising Cu-C and Cu-P bonds represents an underexplored type of luminophore.
View Article and Find Full Text PDFCobalt polypyridyls are highly efficient water-stable molecular catalysts for hydrogen evolution. The catalytic mechanism explaining their activity is under debate and the main question is the nature of the involvement of pyridyls in the proton transfer: the pentapyridyl ligand, acting as a pentadentate ligand, can provide stability to the catalyst or one of the pyridines can be involved in the proton transfer. Time-resolved Co K-edge X-ray absorption spectroscopy in the microsecond time range indicates that, for the [Co (aPPy)] catalyst (aPPy=di([2,2'-bipyridin]-6-yl)(pyridin-2-yl)methanol), the pendant pyridine dissociates from the cobalt in the intermediate Co state.
View Article and Find Full Text PDFA setup for fluorescence-detected X-ray absorption spectroscopy (XAS) with sub-second time resolution has been developed. This technique allows chemical speciation of low-concentrated materials embedded in highly absorbing matrices, which cannot be studied using transmission XAS. Using this setup, the reactivity of 1.
View Article and Find Full Text PDFThe triplet excited state of a new Ir-based photosensitizer with two chromenopyridinone and one bipyridine-based ligands has been studied by pump-probe X-ray absorption near edge structure (XANES) spectroscopy coupled with DFT calculations. The excited state has a lifetime of 0.5 μs in acetonitrile and is characterized by very small changes of the local atomic structure with an average metal-ligand bond length change of less than 0.
View Article and Find Full Text PDFThe transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A.
View Article and Find Full Text PDFThe future of artificial photosynthesis depends on economic and robust water oxidation catalysts (WOCs). Cobalt-based WOCs are especially promising for knowledge transfer between homogeneous and heterogeneous catalyst design. We introduce the active and stable {CoO} cubane [Co(dpy{OH}O)(OAc)(HO)](ClO) (CoO-dpk) as the first molecular WOC with the characteristic {HO-Co(OR)-OH} edge-site motif representing the sine qua non moiety of the most efficient heterogeneous Co-oxide WOCs.
View Article and Find Full Text PDFWe report on an element-selective study of the fate of charge carriers in photoexcited inorganic CsPbBr and CsPb(ClBr) perovskite nanocrystals in toluene solutions using time-resolved X-ray absorption spectroscopy with 80 ps time resolution. Probing the Br K-edge, the Pb L-edge, and the Cs L-edge, we find that holes in the valence band are localized at Br atoms, forming small polarons, while electrons appear as delocalized in the conduction band. No signature of either electronic or structural changes is observed at the Cs L-edge.
View Article and Find Full Text PDFThe kinetics involved in a recently revealed ambient-temperature mechanism for the catalytic oxidation of carbon monoxide by oxygen over a 5 wt % Pt/AlO catalyst are evaluated within a periodic, plug flow, redox operation paradigm using combined mass spectrometry (MS), diffuse reflectance infrared spectroscopy (DRIFTS), and time-resolved Pt L-edge XAFS. The species that are the most active at room temperature are shown to be a high-wavenumber (ca. 1690 cm) carbonate that we associate directly with a room-temperature redox process occurring in a fraction of the Pt atoms present in the catalyst.
View Article and Find Full Text PDFX-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2015
Room-temperature carbon monoxide oxidation, important for maintaining clean air among other applications, is challenging even after a century of research into carbon monoxide oxidation. Here we report using time-resolved diffuse reflectance infrared spectroscopy, X-ray absorption fine structure spectroscopy and mass spectrometry a platinum carbonate-mediated mechanism for the room-temperature oxidation of carbon monoxide. By applying a periodic reduction-oxidation mode of operation we further show that this behaviour is reversible and can be formed into a catalytic cycle that requires molecular communication between metallic platinum nanoparticles and highly dispersed oxidic platinum centres.
View Article and Find Full Text PDFRational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time-resolved X-ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the Co(I) intermediate of cobaloxime, which is a non-noble metal catalyst for solar hydrogen production from water.
View Article and Find Full Text PDFTo develop highly efficient molecular photocatalysts for visible light-driven hydrogen production, a thorough understanding of the photophysical and chemical processes in the photocatalyst is of vital importance. In this context, in situ X-ray absorption spectroscopic (XAS) investigations show that the nature of the catalytically active metal center in a (N^N)MCl2 (M=Pd or Pt) coordination sphere has a significant impact on the mechanism of the hydrogen formation. Pd as the catalytic center showed a substantially altered chemical environment and a formation of metal colloids during catalysis, whereas no changes of the coordination sphere were observed for Pt as catalytic center.
View Article and Find Full Text PDFIn order to probe the structure of reaction intermediates of photochemical reactions a new setup for laser-initiated time-resolved X-ray absorption (XAS) measurements has been developed. With this approach the arrival time of each photon in respect to the laser pulse is measured and therefore full kinetic information is obtained. All X-rays that reach the detector are used to measure this kinetic information and therefore the detection efficiency of this method is high.
View Article and Find Full Text PDF