Publications by authors named "Grigory Krapivinsky"

The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg and Zn Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.

View Article and Find Full Text PDF

TRPM6 and TRPM7 are members of the melastatin-related transient receptor potential (TRPM) subfamily of ion channels. Deletion of either gene in mice is embryonically lethal. TRPM6/7 are the only known examples of single polypeptides containing both an ion channel pore and a serine/threonine kinase (chanzyme).

View Article and Find Full Text PDF

TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles.

View Article and Find Full Text PDF

TRPM7 is a ubiquitous ion channel and kinase, a unique "chanzyme," required for proper early embryonic development. It conducts Zn(2+), Mg(2+), and Ca(2+) as well as monovalent cations and contains a functional serine/threonine kinase at its carboxyl terminus. Here, we show that in normal tissues and cell lines, the kinase is proteolytically cleaved from the channel domain in a cell-type-specific manner.

View Article and Find Full Text PDF

Transient receptor potential melastatin-like 7 (TRPM7) is a channel protein that also contains a regulatory serine-threonine kinase domain. Here, we find that Trpm7-/- T cells are deficient in Fas-receptor-induced apoptosis and that TRPM7 channel activity participates in the apoptotic process and is regulated by caspase-dependent cleavage. This function of TRPM7 is dependent on its function as a channel, but not as a kinase.

View Article and Find Full Text PDF

Specialized proteins in the plasma membrane, endoplasmic reticulum (ER), and mitochondria tightly regulate intracellular calcium. A unique mechanism called store-operated calcium entry is activated when ER calcium is depleted, serving to restore intra-ER calcium levels. An ER calcium sensor, stromal interaction molecule 1 (STIM1), translocates within the ER membrane upon store depletion to the juxtaplasma membrane domain, where it interacts with intracellular domains of a highly calcium-selective plasma membrane ion channel, Orai1.

View Article and Find Full Text PDF

Calcium signalling is critical for successful fertilization. In spermatozoa, capacitation, hyperactivation of motility and the acrosome reaction are all mediated by increases in intracellular Ca(2+). Cation channels of sperm proteins (CATSPERS1-4) form an alkalinization-activated Ca(2+)-selective channel required for the hyperactivated motility of spermatozoa and male fertility.

View Article and Find Full Text PDF

TRPM7, of the transient receptor potential (TRP) family, is both an ion channel and a kinase. Previously, we showed that TRPM7 is located in the membranes of acetylcholine (ACh)-secreting synaptic vesicles of sympathetic neurons, forms a molecular complex with proteins of the vesicular fusion machinery, and is critical for stimulated neurotransmitter release. Here, we targeted pHluorin to small synaptic-like vesicles (SSLV) in PC12 cells and demonstrate that it can serve as a single-vesicle plasma membrane fusion reporter.

View Article and Find Full Text PDF

At excitatory synapses of hippocampal neurons, the multi-PDZ domain scaffolding protein, MUPP1, assembles the NR2B subunit of the NMDA receptor (NMDAR), Ca2+-calmodulin kinase (CamKII), and the alpha1 isoform of the postsynaptic density GTPase activating protein, SynGAP (SynGAPalpha). In order to evaluate the role of this complex in excitatory synaptic neurotransmission we specifically disrupted MUPP1-SynGAPalpha interactions in CA1 neurons of acute hippocampal slices using intracellular perfusion with peptides derived from SynGAPalpha-MUPP1 binding domains. Disruption of the interaction between MUPP1 and SynGAPalpha with two complementary peptides derived from SynGAP and MUPP1 mutual binding sites resulted in enhancement of excitatory postsynaptic currents (EPSCs).

View Article and Find Full Text PDF

Mammalian spermatozoa become motile at ejaculation, but before they can fertilize the egg, they must acquire more thrust to penetrate the cumulus and zona pellucida. The forceful asymmetric motion of hyperactivated spermatozoa requires Ca2+ entry into the sperm tail by an alkalinization-activated voltage-sensitive Ca2+-selective current (ICatSper). Hyperactivation requires CatSper1 and CatSper2 putative ion channel genes, but the function of two other related genes (CatSper3 and CatSper4) is not known.

View Article and Find Full Text PDF

A longstanding hypothesis is that ion channels are present in the membranes of synaptic vesicles and might affect neurotransmitter release. Here we demonstrate that TRPM7, a member of the transient receptor potential (TRP) ion channel family, resides in the membrane of synaptic vesicles of sympathetic neurons, forms molecular complexes with the synaptic vesicle proteins synapsin I and synaptotagmin I, and directly interacts with synaptic vesicular snapin. In sympathetic neurons, changes in TRPM7 levels and channel activity alter acetylcholine release, as measured by EPSP amplitudes and decay times in postsynaptic neurons.

View Article and Find Full Text PDF

The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPPI, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII.

View Article and Find Full Text PDF

During intracellular Ca2+ signalling mitochondria accumulate significant amounts of Ca2+ from the cytosol. Mitochondrial Ca2+ uptake controls the rate of energy production, shapes the amplitude and spatio-temporal patterns of intracellular Ca2+ signals, and is instrumental to cell death. This Ca2+ uptake is undertaken by the mitochondrial Ca2+ uniporter (MCU) located in the organelle's inner membrane.

View Article and Find Full Text PDF

The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor.

View Article and Find Full Text PDF

Mammalian short TRP channels (TRPCs) are putative receptor- and store-operated cation channels that play a fundamental role in the regulation of cellular Ca2+ homeostasis. Assembly of the seven TRPC homologs (TRPC1-7) into homo- and heteromers can create a large variety of different channels. However, the compositions as well as the functional properties of native TRPC complexes are largely undefined.

View Article and Find Full Text PDF