Aims: A multitude of cardiac magnetic resonance (CMR) techniques are used for myocardial strain assessment; however, studies comparing them are limited. We sought to compare global longitudinal (GLS), circumferential (GCS), segmental longitudinal (SLS), and segmental circumferential (SCS) strain values, as well as reproducibility between CMR feature tracking (FT), tagging (TAG), and fast-strain-encoded (fast-SENC) CMR techniques.
Methods And Results: Eighteen subjects (11 healthy volunteers and seven patients with heart failure) underwent two CMR scans (1.
Background: Recently introduced fast strain-encoded (SENC) cardiac magnetic resonance (CMR) imaging (fast-SENC) provides real-time acquisition of myocardial performance in a single heartbeat. We aimed to test the ability and accuracy of real-time strain-encoded CMR imaging to estimate left ventricular volumes, ejection fraction and mass.
Methods: Thirty-five subjects (12 healthy volunteers and 23 patients with known or suspected coronary artery disease) were investigated.
Background: Real-time myocardial contrast echocardiography (MCE) is increasingly used to assess myocardial perfusion. However, objective methods for evaluating MCE are not yet widely available. We sought to validate the ability of Fourier analysis applied to MCE to assess serial changes in microvascular perfusion during coronary occlusion and reperfusion.
View Article and Find Full Text PDF