High-energy accelerators are often used in oncological practice, but the information on the small-field dosimetry for the photon beams with nominal energy above 10 MV is limited. The goal of the present work was to determine the values of the output correction factor ( ) for solid-state detectors (Diode E, PTW 60017; microDiamond, PTW 60019), EBT3 film, and ionization chambers (Semiflex, PTW 31010; Semiflex 3D, PTW 31021; PinPoint, PTW 31015; PinPoint 3D, PTW 31016) in the small fields formed by 10, 15, 18, and 20 MV photon beams. The output correction factors were calculated by Monte-Carlo method using EGSnrc toolkit for six field sizes (from to ) for isocentric and constant source-to-surface distance (SSD) techniques.
View Article and Find Full Text PDFNanoparticles (NPs) with a high atomic number () are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu ( = 29) to BiO ( = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30-300 kVp voltage using various filtration systems and anode materials.
View Article and Find Full Text PDF