Publications by authors named "Grigori E Astrakharchik"

Attractive p-wave one-dimensional fermions are studied in the fermionic Tonks-Girardeau regime in which the diagonal properties are shared with those of an ideal Bose gas. We study the off-diagonal properties and present analytical expressions for the eigenvalues of the one-body density matrix. One striking aspect is the universality of the occupation numbers which are independent of the specific shape of the external potential.

View Article and Find Full Text PDF

We propose a mechanism for liquid formation in strongly correlated lattice systems. The mechanism is based on an interplay between long-range attraction and superexchange processes. As an example, we study dipolar bosons in one-dimensional optical lattices.

View Article and Find Full Text PDF

Fusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired tritium, but also helium, which can trigger nucleation mechanisms owing to the very low solubility of helium in liquid metals.

View Article and Find Full Text PDF

The ground-state properties of two-component bosonic mixtures in a one-dimensional optical lattice are studied both from few- and many-body perspectives. We rely directly on a microscopic Hamiltonian with attractive intercomponent and repulsive intracomponent interactions to demonstrate the formation of a quantum liquid. We reveal that its formation and stability can be interpreted in terms of finite-range interactions between dimers.

View Article and Find Full Text PDF

We study bosons in a one-dimensional hard-wall box potential. In the case of contact interaction, the system is exactly solvable by the Bethe ansatz, as first shown by Gaudin in 1971. Although contained in the exact solution, the boundary energy in the thermodynamic limit for this problem is only approximately calculated by Gaudin, who found the leading order result at weak repulsion.

View Article and Find Full Text PDF