Aim: To study the leakage-penumbra (LP) effect with a proposed correction method for the step-and-shoot intensity modulated radiation therapy (IMRT).
Methods: Leakage-penumbra dose profiles from 10 randomly selected prostate IMRT plans were studied. The IMRT plans were delivered by a Varian 21 EX linear accelerator equipped with a 120-leaf multileaf collimator (MLC).
Rep Pract Oncol Radiother
December 2013
Background: In orthovoltage radiotherapy, since the dose prescription at the patient's surface is based on the absolute dose calibration using water phantom, deviation of delivered dose is found as the heterogeneity such as bone present under the patient's surface.
Aim: This study investigated the dosimetric impact due to the bone heterogeneity on the surface dose in orthovoltage radiotherapy.
Materials And Methods: A 220 kVp photon beam with field size of 5 cm diameter, produced by a Gulmay D3225 orthovoltage X-ray machine was modeled by the BEAMnrc.
This study investigated dosimetric changes in a water phantom when a small air cavity was presented at the central axis of a clinical electron beam. We used 6-, 9-, and 16-MeV electron beams with a 10 x 10 cm(2) applicator and cutout produced by a Varian 21 EX linear accelerator. Percentage depth doses (PDDs) for different depths (0.
View Article and Find Full Text PDFThis study investigates the dosimetric dependence of the dimension of a lead (Pb) layer for shielding using clinical electron beams with different energies. Monte Carlo simulations were used to generate phase space files of the 4, 9 and 16 MeV electron beams produced by a Varian 21 EX linear accelerator using the EGSnrc-based BEAMnrc code, and validated by measurements using films. Pb layers with different thicknesses (2, 4, 6 and 8 mm) and diameters (2.
View Article and Find Full Text PDFIn electron radiotherapy of superficial lesions in the eyelid, lip, buccal mucosa, ear, and nose, backscattered electrons are produced from the lead shield used to protect the critical tissue underneath the tumor. In this study, the backscattered electrons, produced by clinical electron beams using a Varian 21 EX linear accelerator, were studied using Monte Carlo simulations. The electron backscatter factor (EBF), defined as the ratio of dose at the tissue-lead interface to the dose at the same point without the presence of backscatter, was calculated using the Monte Carlo EGSnrc-based code.
View Article and Find Full Text PDFThe effect of beam obliquity on the surface relative dose profiles for the tangential photon beams was studied. The 6 and 15 MV photon beams with 4 x 4 and 10 x 10 cm2 field sizes produced by a Varian 21 EX linear accelerator were used. Phase-space models of the photon beams were created using Monte Carlo simulations based on the EGSnrc code, and were verified using film measurements.
View Article and Find Full Text PDFThe impact of the oblique electron beam on the lateral buildup ratio (LBR), used in the electron pencil beam model to predict the per cent depth dose (PDD) and dose per monitor unit (MU) for an irregular electron field, was examined using Monte Carlo simulation. The EGSnrc-based Monte Carlo code was used to model electron beams produced by a Varian 21 EX linear accelerator for different beam energies, angles of obliquity and field sizes. The Monte Carlo phase space model was verified by measurements using electron diode and radiographic film.
View Article and Find Full Text PDFA custom-made computer program, SWIMRT, to construct "multileaf collimator (MLC) machine" file for intensity-modulated radiotherapy (IMRT) fluence maps was developed using MATLAB and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment-planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image-processing tools such as field resizing and edge trimming to modify the imported map.
View Article and Find Full Text PDFThe relative doses and hot/cold spot positions around a non-radioactive gold seed, irradiated by a 6 or 18 MV photon beam in water, were calculated using Monte Carlo simulation. Phase space files of 6 and 18 MV photon beams with a field size of 1 x 1 cm2 were generated by a Varian 21 EX linear accelerator using the EGSnrc and BEAMnrc code. The seed (1.
View Article and Find Full Text PDFUsing a Varian 21 EX linear accelerator with a multileaf collimator (MLC) of 120 leaves, the penumbra regions of beam profiles within an irregular multileaf collimated fields were studied. MLC fields with different leaf stepping angles from 21.8 degrees to 68.
View Article and Find Full Text PDFPhys Med Biol
January 2007
This note investigated the dosimetric uncertainties due to the positional error when centring a small cutout to the machine central beam axis (CAX) in electron radiotherapy. A group of six circular cutouts with 4 cm diameter were made with their centres shifting 0, 2, 4, 6, 8 and 10 mm from the machine CAX for the 6 x 6 cm(2) applicator. The per cent depth doses, beam profiles and output factors were measured using the 4, 9 and 16 MeV clinical electron beams produced by a Varian 21 EX linear accelerator.
View Article and Find Full Text PDFThe surface doses of 6- and 15-MV prostate intensity-modulated radiation therapy (IMRT) irradiations were measured and compared to those from a 15-MV prostate 4-beam box (FBB). IMRT plans (step-and-shoot technique) using 5, 7, and 9 beams with 6- and 15-MV photon beams were generated from a Pinnacle treatment planning system (version 6) using computed tomography (CT) scans from a Rando Phantom (ICRU Report 48). Metal oxide semiconductor field effect transistor detectors were used and placed on a transverse contour line along the Phantom surface at the central beam axis in the measurement.
View Article and Find Full Text PDFA method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured.
View Article and Find Full Text PDFThe peripheral dose outside the applicators in electron beams was studied using a Varian 21 EX linear accelerator. To measure the peripheral dose profiles and point doses for the applicator, a solid water phantom was used with calibrated Kodak TL films. Peak dose spot was observed in the 4 MeV beam outside the applicator.
View Article and Find Full Text PDFThe normal tissue complication probability (NTCP) is a predictor of radiobiological effect for organs at risk (OAR). The calculation of the NTCP is based on the dose-volume-histogram (DVH) which is generated by the treatment planning system after calculation of the 3D dose distribution. Including the NTCP in the objective function for intensity modulated radiation therapy (IMRT) plan optimization would make the planning more effective in reducing the postradiation effects.
View Article and Find Full Text PDFA new electron monitor unit (MU) calculator program called "eMUc" was developed to provide a convenient electron MU calculation platform for the physics and radiotherapy staff in electron radiotherapy. The program was written using the Microsoft Visual Basic.net framework and has a user-friendly front-end window with the following features: (1) Apart from using the well-known polynomial curvefitting method for the interpolation and extrapolation of relative output factors (ROFs), an exponential curve-fitting method was used to obtain better results.
View Article and Find Full Text PDFFor the step-and-shoot intensity-modulated radiation therapy (IMRT) technique, the combination of high dose rate, multiple beam segments and low dose per segment can lead to significant differences between the planned dose and the dose delivered to the patient. In this technique, a dose delivery inaccuracy known as the 'overshoot' effect is caused by the dose servo control system. This typically occurs in the first and last beam segments and causes an over- and underdose, respectively.
View Article and Find Full Text PDFPhys Med Biol
September 2005
The dose distribution near a non-radioactive gold seed under a 6 MV photon beam was measured using radiographic film, water equivalent bolus and solid water slabs. This type of small seed is typically used as a marker in target positional verification using a portal imager for conformal prostate treatment such as intensity modulated radiation therapy. A stack of three films was placed on top of the seed located on a soft bolus.
View Article and Find Full Text PDF