The evolution of drug-resistant pathogenic microbial species is a major global health concern. Naturally occurring, antimicrobial peptides (AMPs) are considered promising candidates to address antibiotic resistance problems. A variety of computational methods have been developed to accurately predict AMPs.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) have been identified as a potential new class of anti-infectives for drug development. There are a lot of computational methods that try to predict AMPs. Most of them can only predict if a peptide will show any antimicrobial potency, but to the best of our knowledge, there are no tools which can predict antimicrobial potency against particular strains.
View Article and Find Full Text PDFSequence alignment is a standard method for the estimation of the evolutionary, structural, and functional relationships among amino acid sequences. The quality of alignments depends on the used similarity matrix. Statistical contact potentials (CPs) contain information on contact propensities among residues in native protein structures.
View Article and Find Full Text PDFThe present article describes residue level knowledge based potential SORDIS. SORDIS incorporates the information on side-chain orientation in relation to hydrophobic core centres, distance of residue from the globule centre and secondary structure. SORDIS has been tested and compared with widespread evolutionary change-based substitution matrices (BLOSUM, PAM, GONNET, Johnson-Overington, BLAJ, HSDM, and STROMA) in fold recognition experiments within the zone of weak sequence similarity (<16%).
View Article and Find Full Text PDF