Publications by authors named "Griffin M Kearney"

We develop a general framework for state estimation in systems modeled with noise-polluted continuous time dynamics and discrete time noisy measurements. Our approach is based on maximum likelihood estimation and employs the calculus of variations to derive optimality conditions for continuous time functions. We make no prior assumptions on the form of the mapping from measurements to state-estimate or on the distributions of the noise terms, making the framework more general than Kalman filtering/smoothing where this mapping is assumed to be linear and the noises Gaussian.

View Article and Find Full Text PDF