Publications by authors named "Griffin Lentsch"

Punch grafting procedures, where small pieces of normal skin are transplanted into stable vitiligo patches, results in repigmentation in only half of patients treated, yet the factors that determine whether a patient responds to treatment or not are still unknown. Reflectance confocal microscopy (RCM) is adept at visualizing melanocyte migration and epidermal changes over large areas while multiphoton microscopy (MPM) can capture metabolic changes in keratinocytes. With the overall goal of identifying optical biomarkers for early treatment response, we followed 12 vitiligo lesions undergoing punch grafting.

View Article and Find Full Text PDF

Background And Objectives: Non-invasive optical imaging has the potential to provide a diagnosis without the need for biopsy. One such technology is reflectance confocal microscopy (RCM), which uses low power, near-infrared laser light to enable real-time in vivo visualization of superficial human skin from the epidermis down to the papillary dermis. Although RCM has great potential as a diagnostic tool, there is a need for the development of reliable image analysis programs, as acquired grayscale images can be difficult and time-consuming to visually assess.

View Article and Find Full Text PDF

We introduce a compact, fast large area multiphoton exoscope (FLAME) system with enhanced molecular contrast for macroscopic imaging of human skin with microscopic resolution. A versatile imaging platform, FLAME combines optical and mechanical scanning mechanisms with deep learning image restoration to produce depth-resolved images that encompass sub-mm to cm scale areas of tissue within minutes and provide means for a comprehensive analysis of live or resected thick human skin tissue. The FLAME imaging platform, which expands on a design recently introduced by our group, also features time-resolved single photon counting detection to uniquely allow fast discrimination and 3D virtual staining of melanin.

View Article and Find Full Text PDF

Multiphoton microscopy (MPM) is a promising non-invasive imaging tool for discriminating benign nevi from melanoma. In this study, we establish a MPM morphologic catalogue of common nevi, information that will be critical in devising strategies to distinguish them from nevi that are evolving to melanoma that may present with more subtle signs of malignancy. Thirty common melanocytic nevi were imaged in vivo using MPM.

View Article and Find Full Text PDF

Melasma is a skin disorder characterized by hyperpigmented patches due to increased melanin production and deposition. In this pilot study, we evaluate the potential of multiphoton microscopy (MPM) to characterize non-invasively the melanin content, location, and distribution in melasma and assess the elastosis severity. We employed a clinical MPM tomograph to image in vivo morphological features in melasma lesions and adjacent normal skin in 12 patients.

View Article and Find Full Text PDF

Objectives: Non-invasive visualization of hair follicles is important for proper diagnosis and management of alopecia; however, histological assessment remains the gold standard. Laser imaging technologies have made possible noninvasive in vivo evaluation of skin and hair follicle. The aim of this study was to evaluate the ability of multiphoton microscopy (MPM) to non-invasively identify morphological features that can distinguish scarring from non-scarring alopecia.

View Article and Find Full Text PDF

We are combining two optical techniques, pulsed photothermal radiometry (PPTR) and diffuse reflectance spectroscopy (DRS), for noninvasive assessment of the structure and composition of human skin in vivo. The analysis involves simultaneous multidimensional fitting of the measured PPTR signals and DRS spectra with predictions of a numerical model of light transport (Monte Carlo) in a four-layer model optical model of human skin, accounting for the epidermis, papillary and reticular dermis, and subcutis. The assessed epidermal thickness values were tested by coregistration with a multiphoton microscope, which provides vertical sectioning capability based on two-photon excited fluorescence and second-harmonic generation in selected skin components.

View Article and Find Full Text PDF

The tissue metabolic rate of oxygen consumption (tMRO2) is a clinically relevant marker for a number of pathologies including cancer and arterial occlusive disease. We present and validate a noncontact method for quantitatively mapping tMRO2 over a wide, scalable field of view at 16  frames  /  s. We achieve this by developing a dual-wavelength, near-infrared coherent spatial frequency-domain imaging (cSFDI) system to calculate tissue optical properties (i.

View Article and Find Full Text PDF

Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage.

View Article and Find Full Text PDF

Importance: Improvements in skin appearance resulting from treatment with fractionated picosecond-lasers have been noted, but optimizing the treatment efficacy depends on a thorough understanding of the specific skin response. The development of non-invasive laser imaging techniques in conjunction with laser therapy can potentially provide feedback for guidance and optimizing clinical outcome.

Objective: The purpose of this study was to demonstrate the capability of multiphoton microscopy (MPM), a high-resolution, label-free imaging technique, to characterize in vivo the skin response to a fractionated non-ablative picosecond-laser treatment.

View Article and Find Full Text PDF