Publications by authors named "Greyson Shoop"

In a detector system where the number of channels exceeds the number of channels available on an application-specific integrated circuit (ASIC), there is a need to configure channels among multiple ASICs to achieve the lowest electronic noise and highest count rate. In this work, two board configurations were designed to experimentally assess which one provides the more favorable performance. In the half-half configuration, contiguous channels from one edge to the center of CZT detector are read by one ASIC, and the other half are read by the other ASIC.

View Article and Find Full Text PDF

In this article, we investigate quantum entanglement (QE) filtering to address the challenges in multi-isotope positron emission tomography (PET) or in PET studies utilizing radiotracers with dual- positron and prompt gamma emissions. Via GATE simulation, we demonstrate the efficacy of QE filtering using a one-of-a-kind cadmium zinc telluride (CZT) PET system - establishing its viability as a multimodal scanner and ability to perform QE filtering. We show the high Compton scattering probability in this CZT-based scanner with 44.

View Article and Find Full Text PDF

The key metrics for positron emission tomography (PET) imaging devices include the capability to capture the maximum available amount of annihilation photon information while generating high-quality images of the radiation distribution. This capability carries clinical implications by reducing scanning time for imaging, thus reducing radiation exposure for patients. However, imaging quality is degraded by positron range effects and the non-collinearity of positron annihilation photons.

View Article and Find Full Text PDF

The intrinsic resolution of Positron Emission Tomography (PET) imaging is bound by positron range effects, wherein the radioactive decay of the imaging tracer occurs at a disjoint location from positron annihilation. Compounding this issue are the variable ranges positrons achieve, depending on tracer species (the energy they are emitted with) and the medium they travel in (bone vs soft tissue, for example) - causing the range to span more than an order of magnitude across various study scenarios (~0.19 mm to ~6.

View Article and Find Full Text PDF