Connections between agricultural runoff and excess nitrogen in the Upper Mississippi River Basin are well-documented, as is the potential role of constructed wetlands in mitigating this surplus nitrogen. However, limited knowledge exists about the "best" placement of these wetlands for downstream nitrogen reductions within a whole watershed context as well as how far downstream these benefits are realized. In this study, we simulate the cumulative impacts of diverse wetland restoration scenarios on downstream nitrate reductions in different subbasins of the Raccoon River Watershed, Iowa, USA, and spatially trace their relative effects downstream.
View Article and Find Full Text PDFEnviron Sci Technol
February 2023
Despite widespread implementation of watershed nitrogen reduction programs across the globe, nitrogen levels in many surface waters remain high. Watershed legacy nitrogen storage, i.e.
View Article and Find Full Text PDFWetland restoration is a primary management option for removing surplus nitrogen draining from agricultural landscapes. However, wetland capacity to mitigate nitrogen losses at large river-basin scales remains uncertain. This is largely due to a limited number of studies that address the cumulative and dynamic effects of restored wetlands across the landscape on downstream nutrient conditions.
View Article and Find Full Text PDFWatershed-scale hydrologic models are frequently used to inform conservation and restoration efforts by identifying critical source areas (CSAs; alternatively 'hotspots'), defined as areas that export relatively greater quantities of nutrients and sediment. The CSAs can then be prioritized or 'targeted' for conservation and restoration to ensure efficient use of limited resources. However, CSA simulations from watershed-scale hydrologic models may be uncertain and it is critical that the extent and implications of this uncertainty be conveyed to stakeholders and decision makers.
View Article and Find Full Text PDFWetlands are often dominant features in low relief, depressional landscapes and provide an array of hydrologically driven ecosystem services. However, contemporary models do not adequately represent the role of spatially distributed wetlands in watershed-scale water storage and flows. Such tools are critical to better understand wetland hydrological, biogeochemical, and biological functions and predict management and policy outcomes at varying spatial scales.
View Article and Find Full Text PDFRepresenting hydrologic connectivity of non-floodplain wetlands (NFWs) to downstream waters in process-based models is an emerging challenge relevant to many research, regulatory, and management activities. We review four case studies that utilize process-based models developed to simulate NFW hydrology. Models range from a simple, lumped parameter model to a highly complex, fully distributed model.
View Article and Find Full Text PDFGlobally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions.
View Article and Find Full Text PDFDepressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning.
View Article and Find Full Text PDFA hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed evapotranspiration (ET) and gaged streamflow data to spatially improve the water balance. However, methodological clarity on how to "best" integrate ET data and model parameters in multi-objective model calibration to improve simulations is lacking.
View Article and Find Full Text PDFWetlands across the globe provide extensive ecosystem services. However, many wetlands - especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) - remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects.
View Article and Find Full Text PDF