Publications by authors named "Gretel Buchwald"

Nonsense-mediated mRNA decay (NMD) is an mRNA degradation pathway that regulates gene expression and mRNA quality. A complex network of macromolecular interactions regulates NMD initiation, which is only partially understood. According to prevailing models, NMD begins by the assembly of the SURF (SMG1-UPF1-eRF1-eRF3) complex at the ribosome, followed by UPF1 activation by additional factors such as UPF2 and UPF3.

View Article and Find Full Text PDF

RNA helicases are present in all domains of life and participate in almost all aspects of RNA metabolism, from transcription and processing to translation and decay. The diversity of pathways and substrates that they act on is reflected in the diversity of their individual functions, structures, and mechanisms. However, RNA helicases also share hallmark properties.

View Article and Find Full Text PDF

DEAD-box proteins are involved in all aspects of RNA processing. They bind RNA in an ATP-dependent manner and couple ATP hydrolysis to structural and compositional rearrangements of ribonucleoprotein particles. Conformational control is a major point of regulation for DEAD-box proteins to act on appropriate substrates and in a timely manner in vivo.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance pathway that degrades aberrant mRNAs containing premature termination codons (PTCs). NMD is triggered upon the assembly of the UPF surveillance complex near a PTC. In humans, UPF assembly is prompted by the exon junction complex (EJC).

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that detects and degrades mRNAs containing premature stop codons (PTCs). In vertebrates, PTCs trigger efficient NMD when located upstream of an exon junction complex (EJC). Degradation of PTC-containing mRNAs requires the endonucleolytic activity of SMG6, a conserved NMD factor; nevertheless, the precise role for the EJC in NMD and how the SMG6 endonuclease is recruited to NMD targets have been unclear.

View Article and Find Full Text PDF

In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.

View Article and Find Full Text PDF

Structure determination and functional characterization of macromolecular complexes requires the purification of the different subunits in large quantities and their assembly into a functional entity. Although isolation and structure determination of endogenous complexes has been reported, much progress has to be made to make this technology easily accessible. Co-expression of subunits within hosts such as Escherichia coli and insect cells has become more and more amenable, even at the level of high-throughput projects.

View Article and Find Full Text PDF

Polycomb group proteins Ring1b and Bmi1 (B-cell-specific Moloney murine leukaemia virus integration site 1) are critical components of the chromatin modulating PRC1 complex. Histone H2A ubiquitination by the PRC1 complex strongly depends on the Ring1b protein. Here we show that the E3-ligase activity of Ring1b on histone H2A is enhanced by Bmi1 in vitro.

View Article and Find Full Text PDF

RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements.

View Article and Find Full Text PDF

The bacterial enteropathogen Salmonella typhimurium employs a type III secretion system to inject bacterial toxins into the host cell cytosol. These toxins transiently activate Rho family GTP-binding protein-dependent signaling cascades to induce cytoskeletal rearrangements. One of these translocated Salmonella toxins, SopE, can activate Cdc42 in a Dbl-like fashion despite its lack of sequence similarity to Dbl-like proteins, the Rho-specific eukaryotic guanine nucleotide exchange factors.

View Article and Find Full Text PDF