Publications by authors named "Gretchen L Seim"

During an immune response, macrophages systematically rewire their metabolism in specific ways to support their diversve functions. However, current knowledge of macrophage metabolism is largely concentrated on central carbon metabolism. Using multi-omics analysis, we identified nucleotide metabolism as one of the most significantly rewired pathways upon classical activation.

View Article and Find Full Text PDF

Branched chain α-ketoacid dehydrogenase complex (BCKDC) is the rate-limiting enzyme in branched chain amino acid (BCAA) catabolism, a metabolic pathway with great importance for human health. BCKDC belongs to the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex. Here, we revealed that BCKDC can be substantially inhibited by reactive nitrogen species (RNS) via a mechanism similar to what we recently discovered with pyruvate dehydrogenase complex and oxoglutarate dehydrogenase complex-RNS can cause inactivating covalent modifications of the lipoic arm on its E2 subunit.

View Article and Find Full Text PDF

Pyruvate dehydrogenase complex (PDHC) and oxoglutarate dehydrogenase complex (OGDC), which belong to the mitochondrial α-ketoacid dehydrogenase family, play crucial roles in cellular metabolism. These multi-subunit enzyme complexes use lipoic arms covalently attached to their E2 subunits to transfer an acyl group to coenzyme A (CoA). Here, we report a novel mechanism capable of substantially inhibiting PDHC and OGDC: reactive nitrogen species (RNS) can covalently modify the thiols on their lipoic arms, generating a series of adducts that block catalytic activity.

View Article and Find Full Text PDF

Neutrophils are cells at the frontline of innate immunity that can quickly activate effector functions to eliminate pathogens upon stimulation. However, little is known about the metabolic adaptations that power these functions. Here we show rapid metabolic alterations in neutrophils upon activation, particularly drastic reconfiguration around the pentose phosphate pathway, which is specifically and quantitatively coupled to an oxidative burst.

View Article and Find Full Text PDF

The response of macrophages to stimulation is a dynamic process which coordinates the orderly adoption and resolution of various immune functions. Accumulating work over the past decade has demonstrated that during the immune response macrophage metabolism is substantially rewired to support important cellular processes, including the production of bioactive molecules, intercellular communication, and the regulation of intracellular signaling and transcriptional programming. In particular, we discuss an important concept emerging from recent studies - metabolic rewiring during the immune response is temporally structured.

View Article and Find Full Text PDF

Macrophages are highly plastic immune cells that are capable of adopting a wide array of functional phenotypes in response to environmental stimuli. The changes in macrophage function are often supported and regulated by changes in cellular metabolism. Capturing a comprehensive picture of metabolism is vital for understanding the role of metabolic rewiring in the immune response.

View Article and Find Full Text PDF

In response to signals associated with infection or tissue damage, macrophages undergo a series of dynamic phenotypic changes. Here we show that during the response to LPS and interferon-γ stimulation, metabolic reprogramming in macrophages is also highly dynamic. Specifically, the TCA cycle undergoes a two-stage remodeling: the early stage is characterized by a transient accumulation of intermediates including succinate and itaconate, while the late stage is marked by the subsidence of these metabolites.

View Article and Find Full Text PDF

Arginine metabolism is linked to several important metabolic processes, and reprogramming of arginine metabolism occurs in various physiological and pathological conditions. Here we describe a method, using a LC-MS-based metabolomics and N-arginine tracing approach, to quantitatively analyze arginine metabolism. This method can reliably quantify the abundance of important intermediates and fluxes of major metabolic reactions in arginine metabolism in a variety of cultured mammalian cell models.

View Article and Find Full Text PDF

The causes and consequences of geophagy, the craving and consumption of earth, remain enigmatic, despite its recognition as a behavior with public health implications. Iron deficiency has been proposed as both a cause and consequence of geophagy, but methodological limitations have precluded a decisive investigation into this relationship. Here we present a novel in vivo model for assessing the impact of geophagic earth on iron status: Gallus gallus (broiler chicken).

View Article and Find Full Text PDF

The World Health Organization now recommends integrating calcium supplements into antenatal micronutrient supplementation programmes to prevent pre-eclampsia, a leading cause of maternal mortality. As countries consider integrating calcium supplementation into antenatal care (ANC), it is important to identify context-specific barriers and facilitators to delivery and adherence. Such insights can be gained from women's and health workers' experiences with iron and folic acid (IFA) supplements.

View Article and Find Full Text PDF

Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals.

View Article and Find Full Text PDF

Despite widespread consumption of soil among animals, the role of geophagy in health maintenance remains an enigma. It has been hypothesized that animals consume soil for supplementation of minerals and protection against toxins. Most studies determine only the total elemental composition of soil, which may not reflect the amount of minerals available to the consumer.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsu4hcim52vb16pjjkq6nc0o28sjf5l7v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once