Publications by authors named "Greta Sokoloff"

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12).

View Article and Find Full Text PDF

Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e.

View Article and Find Full Text PDF

Animals must distinguish the sensory consequences of self-generated movements (reafference) from those of other-generated movements (exafference). Only self-generated movements entail the production of motor copies (i.e.

View Article and Find Full Text PDF

In early development, active sleep is the predominant sleep state before it is supplanted by quiet sleep. In rats, the developmental increase in quiet sleep is accompanied by the sudden emergence of the cortical delta rhythm (0.5-4 Hz) around postnatal day 12 (P12).

View Article and Find Full Text PDF

The primary motor cortex (M1) exhibits a protracted period of development, including the development of a sensory representation long before motor outflow emerges. In rats, this representation is present by postnatal day (P) 8, when M1 activity is "discontinuous." Here, we ask how the representation changes upon the transition to "continuous" activity at P12.

View Article and Find Full Text PDF

Primary motor cortex (M1) exhibits a protracted period of development that includes the establishment of a somatosensory map long before motor outflow emerges. In rats, the sensory representation is established by postnatal day (P) 8 when cortical activity is still "discontinuous." Here, we ask how the representation survives the sudden transition to noisy "continuous" activity at P12.

View Article and Find Full Text PDF

With our eyes closed, we can track a limb's moment-to-moment location in space. If this capacity relied solely on sensory feedback from the limb, we would always be a step behind because sensory feedback takes time: for the execution of rapid and precise movements, such lags are not tolerable. Nervous systems solve this problem by computing representations-or internal models-that mimic movements as they are happening, with the associated neural activity occurring after the motor command but before sensory feedback.

View Article and Find Full Text PDF

Primary motor cortex (M1) undergoes protracted development in mammals, functioning initially as a sensory structure. Throughout the first postnatal week in rats, M1 is strongly activated by self-generated forelimb movements-especially by the twitches that occur during active sleep. Here, we quantify the kinematic features of forelimb movements to reveal receptive-field properties of individual units within the forelimb region of M1.

View Article and Find Full Text PDF

In humans and other mammals, the stillness of sleep is punctuated by bursts of rapid eye movements (REMs) and myoclonic twitches of the limbs. Like the spontaneous activity that arises from the sensory periphery in other modalities (e.g.

View Article and Find Full Text PDF

It is generally supposed that primary motor cortex (M1) receives somatosensory input predominantly via primary somatosensory cortex (S1). However, a growing body of evidence indicates that M1 also receives direct sensory input from the thalamus, independent of S1; such direct input is particularly evident at early ages before M1 contributes to motor control. Here, recording extracellularly from the forelimb regions of S1 and M1 in unanesthetized rats at postnatal day (P)8 and P12, we compared S1 and M1 responses to self-generated (i.

View Article and Find Full Text PDF

Given the prevalence of sleep in early development, any satisfactory account of infant brain activity must consider what happens during sleep. Only recently, however, has it become possible to record sleep-related brain activity in newborn rodents. Using such methods in rat pups, it is now clear that sleep, more so than wake, provides a critical context for the processing of sensory input and the expression of functional connectivity throughout the sensorimotor system.

View Article and Find Full Text PDF

Cortical development is an activity-dependent process [1-3]. Regarding the role of activity in the developing somatosensory cortex, one persistent debate concerns the importance of sensory feedback from self-generated movements. Specifically, recent studies claim that cortical activity is generated intrinsically, independent of movement [3, 4].

View Article and Find Full Text PDF

During the perinatal period in mammals when active sleep predominates, skeletal muscles twitch throughout the body. We have hypothesized that myoclonic twitches provide unique insight into the functional status of the human infant's nervous system. However, assessments of the rate and patterning of twitching have largely been restricted to infant rodents.

View Article and Find Full Text PDF

There has been extensive discussion of the "Replication Crisis" in many fields, including genome-wide association studies (). We explored replication in a mouse model using an advanced intercross line (), which is a multigenerational intercross between two inbred strains. We re-genotyped a previously published cohort of LG/J x SM/J AIL mice (F; n = 428) using a denser marker set and genotyped a new cohort of AIL mice (F; n = 600) for the first time.

View Article and Find Full Text PDF

Active sleep (AS) provides a unique developmental context for synchronizing neural activity within and between cortical and subcortical structures. In week-old rats, sensory feedback from myoclonic twitches, the phasic motor activity that characterizes AS, promotes coherent theta oscillations (4-8 Hz) in the hippocampus and red nucleus, a midbrain motor structure. Sensory feedback from twitches also triggers rhythmic activity in sensorimotor cortex in the form of spindle bursts, which are brief oscillatory events composed of rhythmic components in the theta, alpha/beta (8-20 Hz), and beta2 (20-30 Hz) bands.

View Article and Find Full Text PDF

Purpose Of Review: Sleep-wake states modulate cortical activity in adults. In infants, however, such modulation is less clear; indeed, early cortical activity comprises bursts of neural activity driven predominantly by peripheral sensory input. Consequently, in many studies of sensory development in rodents, sensory processing has been carefully investigated, but the modulatory role of behavioral state has typically been ignored.

View Article and Find Full Text PDF

In week-old rats, somatosensory input arises predominantly from external stimuli or from sensory feedback (reafference) associated with myoclonic twitches during active sleep. A previous study suggested that the brainstem motor structures that produce twitches also send motor copies (or corollary discharge, CD) to the cerebellum. We tested this possibility by recording from two precerebellar nuclei-the inferior olive (IO) and lateral reticular nucleus (LRN).

View Article and Find Full Text PDF

In the developing visual system before eye opening, spontaneous retinal waves trigger bursts of neural activity in downstream structures, including visual cortex. At the same ages when retinal waves provide the predominant input to the visual system, sleep is the predominant behavioral state. However, the interactions between behavioral state and retinal wave-driven activity have never been explicitly examined.

View Article and Find Full Text PDF

Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here, we show for the first time that the infant rat red nucleus (RN)-a brainstem sensorimotor structure-exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep.

View Article and Find Full Text PDF

The development of the cerebellar system depends in part on the emergence of functional connectivity in its input and output pathways. Characterization of spontaneous activity within these pathways provides insight into their functional status in early development. In the present study we recorded extracellular activity from the interpositus nucleus (IP) and its primary downstream target, the red nucleus (RN), in unanesthetized rats at postnatal days 8 (P8) and P12, a period of dramatic change in cerebellar circuitry.

View Article and Find Full Text PDF

Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512-50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.

View Article and Find Full Text PDF

The cerebellum is a critical sensorimotor structure that exhibits protracted postnatal development in mammals. Many aspects of cerebellar circuit development are activity dependent, but little is known about the nature and sources of the activity. Based on previous findings in 6-day-old rats, we proposed that myoclonic twitches, the spontaneous movements that occur exclusively during active sleep (AS), provide generalized as well as topographically precise activity to the developing cerebellum.

View Article and Find Full Text PDF

Sensory feedback from sleep-related myoclonic twitches is thought to drive activity-dependent development in spinal cord and brain. However, little is known about the neural pathways involved in the generation of twitches early in development. The red nucleus (RN), source of the rubrospinal tract, has been implicated in the production of phasic motor activity during active sleep in adults.

View Article and Find Full Text PDF

Neurophysiological recording of brain activity has been critically important to the field of neuroscience, but has contributed little to the field of developmental psychobiology. The reasons for this can be traced largely to methodological difficulties associated with recording neural activity in behaving newborn rats and mice. Over the last decade, however, the evolution of methods for recording from head-fixed newborns has heralded a new era in developmental neurophysiology.

View Article and Find Full Text PDF