Proteins interact with nucleotides to perform a multitude of functions within cells. These interactions are highly specific; however, the molecular basis for this specificity is not well understood. To identify factors critical for protein-guanine nucleotide recognition the binding of two closely related ligands, guanosine 3'-monophosphate (3'GMP) and inosine 3'-monophosphate (3'IMP), to Ribonuclease Sa (RNase Sa), a small, guanylyl-endoribonuclease from Streptomyces aureofaciens, was compared using isothermal titration calorimetry, NMR, X-ray crystallography and molecular dynamics simulations.
View Article and Find Full Text PDFUsing the binding of a nucleotide inhibitor (guanosine-3'-monophosphate) to a ribonuclease (ribonuclease Sa) as a model system, we show that the salt-dependence of the interaction arises due to specific ion binding at the site of nucleotide binding. The presence of specific ion-protein binding is concluded from a combination of differential scanning calorimetry and NMR data. Isothermal titration calorimetry data are then fit to determine the energetic profile (enthalpy, entropy, and heat capacity) for both the ion-protein and nucleotide-protein interactions.
View Article and Find Full Text PDF