In the past decade, stimuli-responsive hydrogels are increasingly studied as biomaterials for tissue engineering and regenerative medicine purposes. Smart hydrogels can not only replicate the physicochemical properties of the extracellular matrix but also mimic dynamic processes that are crucial for the regulation of cell behavior. Dynamic changes can be influenced by the hydrogel itself (isotropic vs anisotropic) or guided by applying localized triggers.
View Article and Find Full Text PDFIn the present study, a novel in situ forming thermosensitive hydrogel system was investigated as a versatile drug delivery system for ocular therapy. For this purpose, two thermosensitive ABA triblock copolymers bearing either furan or maleimide moieties were synthesized, named respectively poly(NIPAM-co-HEA/Furan)-PEG-P(NIPAM-co-HEA/Furan) (PNF) and poly(NIPAM-co-HEA/Maleimide)-PEG-P(NIPAM-co-HEA/-Maleimide) (PNM). Hydrogels were obtained upon mixing aqueous PNF and PNM solutions followed by incubation at 37 °C.
View Article and Find Full Text PDFIn the framework of the EXPOLIS study in Milan, Italy, 48-h carbon monoxide (CO) exposures of 50 office workers were monitored over a 1-year period. In this work, the exposures were assessed for different averaging times and were compared with simultaneous ambient fixed-site concentrations. The effect of gas cooking and smoking and different methods of commuting on the microenvironment and exposure levels of CO were investigated.
View Article and Find Full Text PDF