Publications by authors named "Gremillet L"

We simulate, using a particle-in-cell code, the chain of acceleration processes at work during the Compton-based interaction of a dilute electron-ion plasma with an extreme-intensity, incoherent γ-ray flux with a photon density several orders of magnitude above the particle density. The plasma electrons are initially accelerated in the radiative flux direction through Compton scattering. In turn, the charge-separation field from the induced current drives forward the plasma ions to near-relativistic speed and accelerates backwards the nonscattered electrons to energies easily exceeding those of the driving photons.

View Article and Find Full Text PDF

Terahertz (THz) emissions from fast electron and ion currents driven in relativistic, femtosecond laser-foil interactions are examined theoretically. We first consider the radiation from the energetic electrons exiting the backside of the target. Our kinetic model takes account of the coherent transition radiation due to these electrons crossing the plasma-vacuum interface as well as of the synchrotron radiation due to their deflection and deceleration in the sheath field they set up in vacuum.

View Article and Find Full Text PDF

The propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma.

View Article and Find Full Text PDF

The objective of this study was to explore and describe the specificities of the occupational life of infertile endometriotic women treated by in vitro fertilization. We conducted a qualitative monocentric study between December 2020 and June 2021. Twelve semi-structured in-depth interviews using a theme-based interview guide with open questions were undertaken with infertile women with deep infiltrating endometriosis.

View Article and Find Full Text PDF

Contemporary ultraintense, short-pulse laser systems provide extremely compact setups for the production of high-flux neutron beams, such as those required for nondestructive probing of dense matter, research on neutron-induced damage in fusion devices or laboratory astrophysics studies. Here, by coupling particle-in-cell and Monte Carlo numerical simulations, we examine possible strategies to optimise neutron sources from ion-induced nuclear reactions using 1-PW, 20-fs-class laser systems. To improve the ion acceleration, the laser-irradiated targets are chosen to be ultrathin solid foils, either standing alone or preceded by a plasma layer of near-critical density to enhance the laser focusing.

View Article and Find Full Text PDF

Background: There are few data concerning the neonatal and long-term prognosis of monochorionic biamniotic twin pregnancies (MCBA) complicated by selective intrauterine growth restriction (sIUGR). The aim of the study is to assess the neurological outcomes at two years of age of these newborns and compares these outcomes to those of newborns resulting from intrauterine growth restriction (IUGR) pregnancies.

Methods: The study focuses on a cross-sectional prospective cohort of patients treated between 2012 and 2019 in Marseille, France.

View Article and Find Full Text PDF

Relativistic interactions between ultraintense (>10^{18}  W cm^{-2}) laser pulses and magnetized underdense plasmas are known to produce few-cycle Cerenkov wake radiation in the terahertz (THz) domain. Using multidimensional particle-in-cell simulations, we demonstrate the possibility of generating high-field (>100  GV m^{-1}) THz bursts from helium gas plasmas embedded in strong (>100  T) magnetic fields perpendicular to the laser path. We show that two criteria must be satisfied for efficient THz generation.

View Article and Find Full Text PDF

The current filamentation instability, which generically arises in the counterstreaming of plasma flows, is known for its ability to convert the free energy associated with anisotropic momentum distributions into kinetic-scale magnetic fields. The saturation of this instability has been extensively studied in symmetric configurations where the interpenetrating plasmas share the same properties (velocity, density, temperature). In many physical settings, however, the most common configuration is that of asymmetric plasma flows.

View Article and Find Full Text PDF

Objective: This study compares the neonatal morbidity and mortality of the smallest twins of monochorionic diamniotic (MCDA) pregnancies complicated with selective intrauterine growth restriction (sIUGR) with newborns from singleton pregnancies with intrauterine growth restriction (IUGR).

Methods: We conducted a retrospective cohort study of patients managed at the prenatal diagnosis center in a single tertiary care hospital between 2012 and 2019. MCDA twin pregnancies complicated with sIUGR (sIUGR group) were compared with singleton pregnancies with IUGR (IUGR group).

View Article and Find Full Text PDF

Sources of high-energy photons have important applications in almost all areas of research. However, the photon flux and intensity of existing sources is strongly limited for photon energies above a few hundred keV. Here we show that a high-current ultrarelativistic electron beam interacting with multiple submicrometer-thick conducting foils can undergo strong self-focusing accompanied by efficient emission of gamma-ray synchrotron photons.

View Article and Find Full Text PDF

In this third paper of a series, we discuss the physics of the population of accelerated particles in the precursor of an unmagnetized, relativistic collisionless pair shock. In particular, we provide a theoretical estimate of their scattering length l_{scatt}(p) in the self-generated electromagnetic turbulence, as well as an estimate of their distribution function. We obtain l_{scatt}(p)≈γ_{p}ε_{B}^{-1}(p/γ_{∞}mc)^{2}c/ω_{p}, with p the particle momentum in the rest frame of the shock front, ε_{B} the strength parameter of the microturbulence, γ_{p} the Lorentz factor of the background plasma relative to the shock front, and γ_{∞} its asymptotic value outside the precursor.

View Article and Find Full Text PDF

In this second paper of a series, we discuss the dynamics of a plasma entering the precursor of an unmagnetized, relativistic collisionless pair shock. We discuss how this background plasma is decelerated and heated through its interaction with a microturbulence that results from the growth of a current filamentation instability in the shock precursor. We make use, in particular, of the reference frame R_{w} in which the turbulence is mostly magnetic.

View Article and Find Full Text PDF

In this first paper of a series dedicated to the microphysics of unmagnetized, relativistic collisionless pair shocks, we discuss the physics of the Weibel-type transverse current filamentation instability that develops in the shock precursor, through the interaction of an ultrarelativistic suprathermal particle beam with the background plasma. We introduce in particular the notion of the "Weibel frame," or scattering center frame, in which the microturbulence is of mostly magnetic nature. We calculate the properties of this frame, using first a kinetic formulation of the linear phase of the instability, relying on Maxwell-Jüttner distribution functions, then using a quasistatic model of the nonlinear stage of the instability.

View Article and Find Full Text PDF

We develop a comprehensive theoretical model of relativistic collisionless pair shocks mediated by the current filamentation instability. We notably characterize the noninertial frame in which this instability is of a mostly magnetic nature, and describe at a microscopic level the deceleration and heating of the incoming background plasma through its collisionless interaction with the electromagnetic turbulence. Our model compares well to large-scale 2D3V particle-in-cell simulations, and provides an important touchstone for the phenomenology of such plasma systems.

View Article and Find Full Text PDF

Terahertz to far-infrared emission by two-color, ultrashort optical pulses interacting with underdense helium gases at ultrahigh intensities (>10^{19}  W/cm^{2}) is investigated by means of 3D particle-in-cell simulations. The terahertz field is shown to be produced by two mechanisms occurring sequentially, namely, photoionization-induced radiation (PIR) by the two-color pulse, and coherent transition radiation (CTR) by the wakefield-accelerated electrons escaping the plasma. We exhibit laser-plasma parameters for which CTR proves to be the dominant process, providing terahertz bursts with field strength as high as 100  GV/m and energy in excess of 10 mJ.

View Article and Find Full Text PDF

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.

View Article and Find Full Text PDF

The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pulses of intensities ~10 W/cm.

View Article and Find Full Text PDF

We present a theoretical investigation of terahertz (THz) generation in laser-induced gas plasmas. The work is strongly motivated by recent experimental results on microplasmas, but our general findings are not limited to such a configuration. The electrons and ions are created by tunnel ionization of neutral atoms, and the resulting plasma is heated by collisions.

View Article and Find Full Text PDF

The formation of collisionless shocks mediated by the ion Weibel instability is addressed theoretically and numerically in the nonrelativistic limit. First, the model developed in C. Ruyer et al.

View Article and Find Full Text PDF

This Letter investigates experimentally the backward stimulated Raman scattering (SRS) of two copropagating, 1-μm wavelength, 1.5-ps duration laser pulses focused side by side, but not simultaneously, in a preformed underdense plasma. When the two lasers do not interact, one of the pulses (so-called strong) yields a large SRS reflectivity, while the other weak pulse is essentially ineffective as regards SRS.

View Article and Find Full Text PDF

We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2).

View Article and Find Full Text PDF