Publications by authors named "Greiner I"

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has a crucial role in cell death and inflammation. A promising approach to develop novel inhibitors of RIPK1 mediated necroptosis is to mix the different binding modes of the known RIPK1 inhibitors into one molecule. Herein we report the synthesis and biological evaluation of novel mixed type inhibitors.

View Article and Find Full Text PDF

Selecting a known HTS hit with the pyrazolo[1,5-]pyrimidine core, our project was started from CMPPE, and its optimization was driven by a ligand-based pharmacophore model developed on the basis of published GABA positive allosteric modulators (PAMs). Our primary goal was to improve the potency by finding new enthalpic interactions. Therefore, we included the lipophilic ligand efficiency (LLE or LipE) as an objective function in the optimization that led to a carboxylic acid derivative ().

View Article and Find Full Text PDF

Steroid-based histamine H receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent HR activity together with significant in vivo H antagonism.

View Article and Find Full Text PDF

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) plays a key role in cell death and inflammation. RIPK1 is a well-established therapeutic target, due to the presence of a unique kinase-regulating allosteric pocket, which enables selective inhibition. Herein we used GSK2982772 as our starting point in our discovery campaign.

View Article and Find Full Text PDF

The V1a receptor is a major contributor in mediating the social and emotional effects of arginine-vasopressin (AVP); therefore it represents a promising target in the treatment of several neuropsychiatric conditions. The aim of this research was to design and synthesize novel and selective V1a antagonists with improved and profiles. Through optimization and detailed SAR studies, we developed low nanomolar antagonists, and further characterizations led to the discovery of the clinical candidate compound (RGH-122).

View Article and Find Full Text PDF

During optimization of a previously identified lead compound, attempts were made to optimize the reactive indole structural element, the suboptimal metabolic stability, as well as the low kinetic solubility. It was concluded that the indole was important for activity. With the aim of further improvements, more thorough modifications were also carried out.

View Article and Find Full Text PDF

The discovery and characterization of novel naphthyridine derivatives with selective α5-GABAR negative allosteric modulator (NAM) activity are disclosed. Utilizing a scaffold-hopping strategy, fused [6 + 6] bicyclic scaffolds were designed and synthesized. Among these, 1,6-naphthyridinones were identified as potent and selective α5-GABAR NAMs with metabolic stability, cardiac safety, and beneficial intellectual property (IP) issues.

View Article and Find Full Text PDF

The systemic use of GABA orthosteric agonist baclofen might be limited due to its detrimental properties: sedation and motor impairment. In contrast, GABA positive allosteric modulators produce less adverse effects. Using BHF-177 as a starting point, we found a new active scaffold: the 6-aryl-quinazoline scaffold.

View Article and Find Full Text PDF

Obesity is a global epidemic associated with multiple severe diseases. Several pharmacotherapies have been investigated including the antagonists of melanin concentrating hormone receptor 1 (MCHR1). The design, synthesis, and biological studies of novel MCHR1 antagonists based on benzofuro-pyridine and pyrazino-indole scaffold was performed.

View Article and Find Full Text PDF

Dronic acid derivatives, important drugs against bone diseases, may be synthesized from the corresponding substituted acetic acid either by reaction with phosphorus trichloride in methanesulfonic acid as the solvent or by using also phosphorous acid as the P-reactant if sulfolane is applied as the medium. The energetics of the two protocols were evaluated by high-level quantum chemical calculations on the formation of fenidronic acid and benzidronic acid. The second option, involving (HO)P-O-PCl as the nucleophile, was found to be more favorable over the first variation, comprising ClP-O-SOMe as the real reagent, especially for the case of benzidronate.

View Article and Find Full Text PDF

A new class of selective vasopressin receptor 1A (V) antagonists was identified, where "methyl-scan" was performed around the benzene ring of the 5-hydroxy-triazolobenzazepine core. This led to the synthesis of two 10-methyl derivatives, each possessing a chiral axis and a stereogenic center. The four atropisomeric stereoisomers (involving two enantiomer pairs and atropisomeric diastereomers) could be successfully isolated and spectroscopically characterized.

View Article and Find Full Text PDF

HTS campaign of the corporate compound collection resulted in a novel, oxalic acid diamide scaffold of α7 nACh receptor positive allosteric modulators. During the hit expansion, several derivatives, such as 4, 11, 17 demonstrated not only high in vitro potency, but also in vivo efficacy in the mouse place recognition test. The advanced hit molecule 11 was further optimized by the elimination of the putatively mutagenic aromatic-amine building block that resulted in a novel, aminomethylindole compound family.

View Article and Find Full Text PDF

Our previous scaffold-hopping attempts resulted in dihydropyrazino-benzimidazoles as metabotropic glutamate receptor-2 (mGluR2) positive allosteric modulators (PAMs) with suboptimal drug-like profiles. Here, we report an alternative fragment-based optimization strategy applied on the new dihydropyrazino-benzimidazolone scaffold. Analyzing published high-affinity mGluR2 PAMs, we used a pharmacophore-guided approach to identify suitable growing vectors and optimize the scaffold in these directions.

View Article and Find Full Text PDF

A new, continuous-flow consecutive reduction method was developed for the C-N bond formation in the synthesis of the key intermediate of the antipsychotic drug cariprazine. The two-step procedure consists of a DIBAL-H mediated selective ester reduction conducted in a novel, miniature alternating diameter reactor, followed by reductive amination using catalytic hydrogenation on 5% Pt/C. The connection of the optimized modules was accomplished using an at-line extraction to prevent precipitation of the aluminum salt byproducts.

View Article and Find Full Text PDF

The paper focuses on the scaffold hopping-based discovery and characterization of novel nicotinic alpha 7 receptor positive modulator (α7 nAChR PAM) ligands around the reference molecule (A-867744). First, substantial efforts were carried out to assess the importance of the various pharmacophoric elements on the in vitro potency (SAR evaluation) by chemical modifications. Subsequently, several new derivatives with versatile, heteroaromatic central cores were synthesized and characterized.

View Article and Find Full Text PDF

Receptor function is traditionally controlled from the orthosteric binding site of G-protein coupled receptors. Here, we show that the functional activity and signalling of human dopamine D2 and D3 receptor ligands can be fine-tuned from the extracellular secondary binding pocket (SBP) located far from the signalling interface suggesting optimization of the SBP binding part of bitopic ligands might be a useful strategy to develop GPCR ligands with designed functional and signalling profile.

View Article and Find Full Text PDF

A scaffold hopping strategy converted the known 1-[(1-methyl-1H-imidazol-2-yl)methyl]-4-phenylpiperidine core (1 and 2) by cyclization to a fused [6 + 5+6] membered heterocyclic mGluR2 PAM scaffold. Pharmacophore guided structure-activity relationship (SAR) studies resulted in a series of potent and metabolically stable mGluR2 PAMs. A representative optimized compound (95) having the most balanced profile, demonstrated efficacy in the PCP-induced hyper-locomotion model in mice that revealed the new chemotype being a promising PAM lead targeting mGluR2 receptors and providing support for further translational studies.

View Article and Find Full Text PDF

To further proceed with our previous work, novel steroid-based histamine H receptor antagonists were identified and characterized. Using an 'amine-to-amide' modification strategy at position 17, in vitro and in vivo potent monoamino steroid derivatives were found during the lead optimization. Usage of the non-basic amide moiety resulted in beneficial effects both in activity and selectivity.

View Article and Find Full Text PDF

Theory of mind (ToM) development is fostered by parent-child interactions characterized by accurate reflection on the child's mental states, or reflective function (RF), by the caregiver. Therefore, attachment-based RF is the foundation upon which children learn to reason about minds outside the attachment context (domain-general ToM). However, it is not known to what extent attachment-based RF of the self versus caregivers uniquely relates to domain-general ToM.

View Article and Find Full Text PDF

A medium-throughput screening (MTS) of biomimetic drug metabolite synthesis is developed by using an iron porphyrin catalyst. The microplate method, in combination with HPLC-MS analysis, was shown to be a useful tool for process development and parameter optimization in the production of targeted metabolites and/or oxidation products of forty-three different drug substances. In the case of the biomimetic oxidation of amiodarone, the high quantity and purity of the isolated products enabled detailed HRMS and NMR spectroscopic studies.

View Article and Find Full Text PDF

Metabotropic glutamate receptor 2 (mGluR2) positive allosteric modulators (PAMs) have been implicated as potential pharmacotherapy for psychiatric conditions. Screening our corporate compound deck, we identified a benzotriazole fragment (4) that was rapidly optimized to a potent and metabolically stable early lead (16). The highly lipophilic character of 16, together with its limited solubility, permeability, and high protein binding, however, did not allow reaching of the proof of concept in vivo.

View Article and Find Full Text PDF

Emerging from an HTS campaign, novel steroid-based histamine H receptor antagonists were identified and characterized. Structural moieties of the hit compounds were combined to improve binding affinities which resulted in compound 4 as lead molecule. During the lead optimization due to the versatile modifications of diamino steroid derivatives, several in vitro potent compounds with subnanomolar binding affinities to histamine H receptors were found.

View Article and Find Full Text PDF

Continuous-flow multistep synthesis is combined with quasi-continuous final-product purification to produce pure products from crude reaction mixtures. In the nucleophilic aromatic substitution of 2,4-difluoronitrobenzene with morpholine followed by a heterogeneous catalytic hydrogenation, the desired monosubstituted product can be continuously separated from the co- and by-products in a purity of over 99 % by coupling a flow reactor sequence to a multiple dual-mode (MDM) centrifugal partition chromatography (CPC) device. This purification technique has many advantages over HPLC, such as higher resolution and no need for column replacement or silica recycling, and it does not suffer from irreversible adsorption.

View Article and Find Full Text PDF

Negative allosteric modulators of metabotropic glutamate receptor 5 (mGlu) showed efficacy in a number of animal models of different CNS diseases including anxiety and depression. Virtually all of the compounds which reached the clinic belong to the same chemotype having an acetylenic linker that connects (hetero)cyclic moieties. Searching for new chemotypes we identified a morpholino-sulfoquinoline derivative (1) by screening our corporate compound deck.

View Article and Find Full Text PDF

Negative allosteric modulators (NAM) of metabotropic glutamate receptor 5 (mGluR5) have been implicated as a potential pharmacotherapy for a number of psychiatric diseases, including anxiety and depression. Most of the mGluR5 NAM clinical candidates can be characterized by the central acetylenic moiety that connects the terminal pharmacophores. Identification of a sulfoquinoline hit via high throughput screening (HTS) followed by optimization provided a 4-phenyl-3-aryl-sulfoquinoline lead compound with the minimal pharmacophore.

View Article and Find Full Text PDF