Publications by authors named "Gregory Wray"

Article Synopsis
  • - "Regulative development" in animal embryos allows for the replacement of missing cells, but the specific molecular mechanisms behind this are not fully understood.
  • - In sea urchins, removing skeletogenic cell progenitors leads to a change in cell fate called "transfating," where most mesoderm cells can be replaced, except for pigment cells, due to dependence on signals from micromeres.
  • - Single-cell RNA sequencing (scRNA-seq) tracks the gene regulatory transitions during this replacement process, revealing that timing of signaling (like Delta and Nodal) is crucial for the successful reprogramming of cells, particularly affecting whether pigment cells can be rescued.
View Article and Find Full Text PDF

Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development.

View Article and Find Full Text PDF

Biphasic lifecycles are widespread among animals, but little is known about how the developmental transition between larvae and adults is regulated. Sea urchins are a unique system for studying this phenomenon because of the stark differences between their bilateral larval and pentaradial adult body plans. Here, we use single-cell RNA sequencing to analyze the development of Heliocidaris erythrogramma (He), a sea urchin species with an accelerated, non-feeding mode of larval development.

View Article and Find Full Text PDF

Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Lytechinus variegatus (Lv).

View Article and Find Full Text PDF

Dicer substrate interfering RNAs (DsiRNAs) destroy targeted transcripts using the RNA-Induced Silencing Complex (RISC) through a process called RNA interference (RNAi). This process is ubiquitous among eukaryotes. Here we report the utility of DsiRNA in embryos of the sea urchin Specific knockdowns phenocopy known morpholino and inhibitor knockdowns, and DsiRNA offers a useful alternative to morpholinos.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how changes in regulatory mechanisms during development contribute to differences in physical traits (phenotypic diversity) between species, using single-cell RNA sequencing (scRNA-seq) to analyze early development in sea urchins.
  • - It focuses on a recent evolutionary shift in sea urchins' life history that led to significant changes in embryonic development patterns, highlighting differences in cell fate specification and signaling centers between derived and ancestral species.
  • - The findings indicate that while some developmental interactions are preserved in the evolved species, they may be delayed, and specific changes are correlated with differences in larval morphology, suggesting a link between development and evolutionary adaptations.
View Article and Find Full Text PDF

Humans evolved an extraordinarily expanded and complex cerebral cortex, associated with developmental and gene regulatory modifications . Human accelerated regions (HARs) are highly conserved genomic sequences with human-specific nucleotide substitutions. Although there are thousands of annotated HARs, their functional contribution to human-specific cortical development is largely unknown .

View Article and Find Full Text PDF

Background: Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world.

View Article and Find Full Text PDF

Chromatin accessibility plays an important role in shaping gene expression, yet little is known about the genetic and molecular mechanisms that influence the evolution of chromatin configuration. Both local (cis) and distant (trans) genetic influences can in principle influence chromatin accessibility and are based on distinct molecular mechanisms. We, therefore, sought to characterize the role that each of these plays in altering chromatin accessibility in 2 closely related sea urchin species.

View Article and Find Full Text PDF

The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp.

View Article and Find Full Text PDF

Echinometra lucunter, the rock-boring sea urchin, is a widely distributed echinoid and a model for ecological studies of reproduction, responses to climate change, and speciation. We present a near chromosome-level genome assembly of E. lucunter, including 21 scaffolds larger than 10 Mb predicted to represent each of the chromosomes of the species.

View Article and Find Full Text PDF

Chromatin accessibility plays an important role in shaping gene expression patterns across development and evolution; however, little is known about the genetic and molecular mechanisms that influence chromatin configuration itself. Because and influences can both theoretically influence the accessibility of the epigenome, we sought to better characterize the role that both of these mechanisms play in altering chromatin accessibility in two closely related sea urchin species. Using hybrids of the two species, and adapting a statistical framework previously developed for the analysis of and influences on the transcriptome, we examined how these mechanisms shape the regulatory landscape at three important developmental stages, and compared our results to similar patterns in the transcriptome.

View Article and Find Full Text PDF

Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species.

View Article and Find Full Text PDF

Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp.

View Article and Find Full Text PDF

Chromatin configuration is highly dynamic during embryonic development in animals, exerting an important point of control in transcriptional regulation. Yet there exists remarkably little information about the role of evolutionary changes in chromatin configuration to the evolution of gene expression and organismal traits. Genome-wide assays of chromatin configuration, coupled with whole-genome alignments, can help address this gap in knowledge in several ways.

View Article and Find Full Text PDF

As analyses of developmental mechanisms extend to ever more species, it becomes important to understand not just what is conserved or altered during evolution, but why. Closely related species that exhibit extreme phenotypic divergence can be uniquely informative in this regard. A case in point is the sea urchin genus Heliocidaris, which contains species that recently evolved a life history involving nonfeeding larvae following nearly half a billion years of prior evolution with feeding larvae.

View Article and Find Full Text PDF

Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points.

View Article and Find Full Text PDF

Reports of P. vivax infections among Duffy-negative hosts have accumulated throughout sub-Saharan Africa. Despite this growing body of evidence, no nationally representative epidemiological surveys of P.

View Article and Find Full Text PDF

Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin , we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome.

View Article and Find Full Text PDF

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape.

View Article and Find Full Text PDF

The molecular mechanisms underlying development of the pentameral body of adult echinoderms are poorly understood but are important to solve with respect to evolution of a unique body plan that contrasts with the bilateral body plan of other deuterostomes. As Nodal and BMP2/4 signalling is involved in axis formation in larvae and development of the echinoderm body plan, we used the developmental transcriptome generated for the asterinid seastar Parvulastra exigua to investigate the temporal expression patterns of Nodal and BMP2/4 genes from the embryo and across metamorphosis to the juvenile. For echinoderms, the Asteroidea represents the basal-type body architecture with a distinct (separated) ray structure.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibitors of apoptosis (IAPs) play a key role in regulating cell death, but their understanding is limited outside humans and model organisms, particularly in diverse groups like Mollusca.
  • A genome assembly of the hard clam Mercenaria mercenaria shows a significant expansion of the IAP gene family, with 159 members—the largest known in any metazoan—implying that such expansion is common among bivalves.
  • The evolution of these IAP genes involved ancient origins and extensive duplication, leading to diverse functions and adaptive responses to environmental stresses, highlighting their importance in the evolutionary success of mollusks.
View Article and Find Full Text PDF

Long QT syndrome (LQTS) is a genetic disease resulting in a prolonged QT interval on a resting electrocardiogram, predisposing affected individuals to polymorphic ventricular tachycardia and sudden death. Although a number of genes have been implicated in this disease, nearly one in four individuals exhibiting the LQTS phenotype are genotype-negative. Whole-exome sequencing identified a missense T223M variant in TBX5 that cosegregates with prolonged QT interval in a family with otherwise genotype-negative LQTS and sudden death.

View Article and Find Full Text PDF

Background: The emergence of a novel coronavirus (SARS-CoV-2) associated with severe acute respiratory disease (COVID-19) has prompted efforts to understand the genetic basis for its unique characteristics and its jump from non-primate hosts to humans. Tests for positive selection can identify apparently nonrandom patterns of mutation accumulation within genomes, highlighting regions where molecular function may have changed during the origin of a species. Several recent studies of the SARS-CoV-2 genome have identified signals of conservation and positive selection within the gene encoding Spike protein based on the ratio of synonymous to nonsynonymous substitution.

View Article and Find Full Text PDF

Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile.

View Article and Find Full Text PDF