This work presents an approach for the recognition of plastics using a low-cost spectroscopy sensor module together with a set of machine learning methods. The sensor is a multi-spectral module capable of measuring 18 wavelengths from the visible to the near-infrared. Data processing and analysis are performed using a set of ten machine learning methods (Random Forest, Support Vector Machines, Multi-Layer Perceptron, Convolutional Neural Networks, Decision Trees, Logistic Regression, Naive Bayes, k-Nearest Neighbour, AdaBoost, Linear Discriminant Analysis).
View Article and Find Full Text PDFVisual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF).
View Article and Find Full Text PDF