Publications by authors named "Gregory W Peet"

Unlabelled: KRAS inhibitors have demonstrated exciting preclinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KrasG12D, p53-mutant, murine pancreatic ductal adenocarcinoma-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intratumoral CD8+ T cells without durable responses.

View Article and Find Full Text PDF

The immune microenvironment of hepatocellular carcinoma (HCC) is poorly characterized. Combining two single-cell RNA sequencing technologies, we produced transcriptomes of CD45 immune cells for HCC patients from five immune-relevant sites: tumor, adjacent liver, hepatic lymph node (LN), blood, and ascites. A cluster of LAMP3 dendritic cells (DCs) appeared to be the mature form of conventional DCs and possessed the potential to migrate from tumors to LNs.

View Article and Find Full Text PDF

Vascular adhesion protein-1 (VAP-1) has been implicated in the pathogenesis of inflammatory diseases and is suggested to play a role in immune cell trafficking. It is not clear whether this effect is mediated by the oxidase activity or by other features of the protein such as direct adhesion. In order to study the role of VAP-1 oxidase activity in vivo, we have generated mice carrying an oxidase activity-null VAP-1 protein.

View Article and Find Full Text PDF

Vascular adhesion protein-1 (VAP-1), also known as semicarbazide-sensitive amine oxidase (SSAO) or copper-containing amine oxidase (AOC3, EC 1.4.3.

View Article and Find Full Text PDF

An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency.

View Article and Find Full Text PDF

The characterization of the potent p38 inhibitor BIRB796 as a dual inhibitor of p38/Jun N-terminal kinases (JNK) mitogen-activated protein kinases (EC 2.7.11.

View Article and Find Full Text PDF

The discovery of a series of potent, carboline-based MK2 inhibitors is described. These compounds inhibit MK2 with IC50s as low as 10 nM, as measured in a DELFIA assay. An X-ray crystal structure reveals that they bind in a region near the p-loop and the hinge region of MK2a.

View Article and Find Full Text PDF

A novel inhibitor of p38 mitogen-activated protein kinase (p38), CMPD1, identified by high-throughput screening, is characterized herein. Unlike the p38 inhibitors described previously, this inhibitor is substrate selective and noncompetitive with ATP. In steady-state kinetics experiments, CMPD1 was observed to prevent the p38alpha-dependent phosphorylation (K(i)(app) = 330 nM) of the splice variant of mitogen-activated protein kinase-activated protein kinase 2 (MK2a) that contains a docking domain for p38alpha and p38beta, but it did not prevent the phosphorylation of ATF-2 (K(i)(app) > 20 microM).

View Article and Find Full Text PDF

The p38 mitogen-activated protein kinase (p38) pathway is required for the production of proinflammatory cytokines (TNFalpha and IL-1) that mediate the chronic inflammatory phases of several autoimmune diseases. Potent p38 inhibitors, such as the slow tight-binding inhibitor BIRB 796, have recently been reported to block the production of TNFalpha and IL-1beta. Here we analyze downstream signaling complexes and molecular mechanisms, to provide new insight into the function of p38 signaling complexes and the development of novel inhibitors of the p38 pathway.

View Article and Find Full Text PDF

It has been reported that the diaryl urea class of p38alpha inhibitors binds to p38 map kinase with both high affinity and slow binding kinetics (Pargellis et al. Nat. Struct.

View Article and Find Full Text PDF

BIRB 796, a member of the N-pyrazole-N'-naphthly urea class of p38MAPK inhibitors, binds to the kinase with both slow association and dissociation rates. Prior to binding, the kinase undergoes a reorganization of the activation loop exposing a critical binding domain. We demonstrate that, independent of the loop movement, association rates are governed by low energy conformations of the inhibitor and polar functionality on the tolyl ring.

View Article and Find Full Text PDF

The tyrosine kinase p56lck (lck) is essential for T cell activation; thus, inhibitors of lck have potential utility as autoimmune agents. Our initial disclosure of a new class of lck inhibitors based on the phenylaminoimidazoisoquinolin-9-one showed reasonable cellular activity but did not work in vivo upon oral administration. Our current work highlights the further use of rational drug design and molecular modeling to produce a series of lck inhibitors that demonstrate cellular activity below 100 nM and are as efficacious as cyclosporin A in an in vivo mouse model of anti-CD3-induced IL-2 production.

View Article and Find Full Text PDF

The IKKbeta and NEMO/IKKgamma subunits of the NF-kappaB-activating signalsome complex are known to be essential for activating NF-kappaB by inflammatory and other stress-like stimuli. However, the IKKalpha subunit is believed to be dispensable for the latter responses and instead functions as an in vivo mediator of other novel NF-kappaB-dependent and -independent functions. In contrast to this generally accepted view of IKKalpha's physiological functions, we demonstrate in mouse embryonic fibroblasts (MEFs) that, akin to IKKbeta and NEMO/IKKgamma, IKKalpha is also a global regulator of tumor necrosis factor alpha- and IL-1-responsive IKK signalsome-dependent target genes including many known NF-kappaB targets such as serum amyloid A3, C3, interleukin (IL)-6, IL-11, IL-1 receptor antagonist, vascular endothelial growth factor, Ptx3, beta(2)-microglobulin, IL-1alpha, Mcp-1 and -3, RANTES (regulated on activation normal T cell expressed and secreted), Fas antigen, Jun-B, c-Fos, macrophage colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor.

View Article and Find Full Text PDF

An imidazo[4,5-h]isoquinolin-7,9-dione (1) was identified as an adenosine 5'-triphosphate competitive inhibitor of lck by high throughput screening. Initial structure-activity relationship studies identified the dichlorophenyl ring and the imide NH as important pharmacophores. A binding model was constructed to understand how 1 binds to a related kinase, hck.

View Article and Find Full Text PDF