Müller glia in the zebrafish retina respond to retinal damage by re-entering the cell cycle, which generates large numbers of retinal progenitors that ultimately replace the lost neurons. In this study we compared the regenerative outcomes of adult zebrafish exposed to one round of phototoxic treatment with adult zebrafish exposed to six consecutive rounds of phototoxic treatment. We observed that Müller glia continued to re-enter the cell cycle to produce clusters of retinal progenitors in zebrafish exposed to multiple rounds of phototoxic light.
View Article and Find Full Text PDFIn contrast to the mammalian retina, the zebrafish retina possesses the ability to regenerate. This is primarily accomplished through Müller glial cells, which, upon damage, re-enter the cell cycle to form retinal progenitors. The progenitors continue to proliferate as they migrate to the area of damage and ultimately differentiate into new neurons.
View Article and Find Full Text PDFDisturbed sleep is one of the most common complaints following traumatic brain injury (TBI) and worsens morbidity and long-term sequelae. Further, sleep and TBI share neurophysiologic underpinnings with direct relevance to recovery from TBI. As such, disturbed sleep and clinical sleep disorders represent modifiable treatment targets to improve outcomes in TBI.
View Article and Find Full Text PDFIn contrast to mammals, zebrafish posses the remarkable ability to regenerate retinal neurons. Damage to the zebrafish retina induces Müller glia to act as stem cells, generating retinal progenitors for regeneration. In contrast, injury in the mammalian retina results in Müller glial reactive gliosis, a characteristic gliotic response that is normally detrimental to vision.
View Article and Find Full Text PDF