Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data.
View Article and Find Full Text PDFWe apply first-principles approaches with Hubbard U corrections for calculation of small molecule binding energetics to open-shell transition metal atoms in metal-organic frameworks (MOFs). Using density functional theory with van der Waals dispersion-corrected functionals, we determine Hubbard U values ab initio through an established linear response procedure for M-MOF-74, for a number of different metal centers (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu). While our ab initio U values differ from those used in previous work, we show that they result in lattice parameters and electronic contributions to CO2-MOF binding energies that lead to excellent agreement with experiments and previous results, yielding lattice parameters within 3%.
View Article and Find Full Text PDFA key challenge in the area of bioinformatics in the coming decades is the ability to manage the wealth of information that is being generated from the variety of high throughput methodologies currently being undertaken in laboratories across the world. While these approaches have made available large volumes of data to the research community, less attention has been given to the problem of how to intuitively present the data to enable greater biological insights. Recently, an attempt was made to tackle this problem in the area of Arabidopsis proteomics.
View Article and Find Full Text PDFMunicipal mixed-use zoning (MUZ) is one public health strategy to create more walkable neighborhoods by reducing the separation of daily activities. This study uses a novel data-gathering methodology to evaluate municipal zoning ordinances in twenty-two California cities in conjunction with the walkability potential of resulting mixed-use zones, to explore the extent to which variations in uses mandated by MUZ ordinances are correlated with variations in walking opportunities. We find that, after controlling for population, socioeconomic status, and zone size, significant relationships exist between the range and precision of uses mandated by MUZ ordinances and the mixture and breadth of walking destinations in these zones.
View Article and Find Full Text PDFThe recent aggregation of matched proteomics data for the model plant Arabidopsis has enabled the assessment of a diverse array of large scale shotgun proteomics data. A collection of over nine million matched peptides was used to assess proteome coverage and experimental parameters when compared to the theoretical tryptic peptide population. The analysis indicated that the experimentally identified median peptide mass was significantly higher than the theoretical median tryptic peptide in Arabidopsis.
View Article and Find Full Text PDF