Background: In situ vaccination (ISV) is a cancer immunotherapy strategy in which immunostimulatory reagents are introduced directly into a tumor to stimulate antitumor immunity both against the treated tumor and systemically against untreated tumors. Recently, we showed that cowpea mosaic virus (CPMV) is a potent multi-toll-like receptor (TLR) agonist with potent efficacy for treating tumors in mice and dogs by ISV. However, ISV with CPMV alone does not uniformly treat all mouse tumor models tested, however this can be overcome through strategic combinations.
View Article and Find Full Text PDFDefective interfering (DI) genomes restrict viral replication and induce type I interferon. Since DI genomes have been proposed as vaccine adjuvants or therapeutic antiviral agents, it is important to understand their generation, delineate their mechanism of action, develop robust production capacities, assess their safety and longevity, and determine their long-term effects. To address this, we generated a recombinant canine distemper virus (rCDV) from an entirely synthetic molecular clone designed using the genomic sequence from a clinical isolate obtained from a free-ranging raccoon with distemper.
View Article and Find Full Text PDFCancer Res
September 2020
IL6 is targeted as part of treatment in adoptive cell therapy (ACT) because of its protumor effects and its role in the cytokine release syndrome. However, another major role of IL6 is to polarize naïve CD4 T cells from Tregs to Th17 cells. While Th17 T cells are associated with autoimmunity, they are present around many different solid tumor cancers and their role in tumor microenvironments is unclear.
View Article and Find Full Text PDF